The evolution of modern rainforests began with the dinosaur-killing asteroid

The lush biodiversity of South America's rainforests is rooted in one of the most cataclysmic events that ever struck Earth.

​Velociraptor Dinosaur

Velociraptor Dinosaur in the Rainforest

meen_na via Adobe Stock
  • One especially mysterious thing about the asteroid impact, which killed the dinosaurs, is how it transformed Earth's tropical rainforests.
  • A recent study analyzed ancient fossils collected in modern-day Colombia to determine how tropical rainforests changed after the bolide impact.
  • The results highlight how nature is able to recover from cataclysmic events, though it may take millions of years.

About 66 million years ago, a massive asteroid slammed into present-day Chicxulub, Mexico, triggering the extinction of dinosaurs. Scientists estimate the impact killed 75 percent of life on Earth. But what's remained more mysterious is how the event shaped the future of plant life, specifically tropical rainforests.

A new study published in Science explores how the so-called bolide impact at the end of the Cretaceous period paved the way for the evolution of our modern rainforests, the most diverse terrestrial ecosystems on Earth.

For the study, researchers analyzed thousands of samples of fossil pollen, leaves, and spores collected from various sites across Colombia. The researchers analyzed the samples to determine which types of plants were dominant, the diversity of plant life, and how insects interacted with plants.

All samples dated back to the Cretaceous-Paleogene boundary, some 70 million to 56 million years ago. Back then, the region's climate was mostly humid and hot, as it is today. However, the composition and structure of forests were quite different before the impact, according to the study results.

Tropical jungle Tropical jungle with river and sun beam and foggy in the gardenSASITHORN via Adobe Stock

For one, the region's rainforests used to have a roughly equal mix of angiosperms (shrubs and flowering trees) and plants like conifers and ferns. The rainforests also had a more open canopy structure, which allowed more light to reach the forest floor and meant that plants faced less competition for light.

What changed after the asteroid hit? The results suggest the impact and its aftermath led to a 45 percent decrease in plant diversity, a loss from which the region took about 6 million years to recover. But different plants came to replace the old ones, with an increasing proportion of flowering plants sprouting up over the millennia.

"A single historical accident changed the ecological and evolutionary trajectory of tropical rainforests," Carlos Jaramillo, study author and paleopalynologist at the Smithsonian Tropical Research Institute in Panama City, told Science News. "The forests that we have today are really the by-product of what happened 66 million years ago."

Today's rainforests are significantly more biodiverse than they were 66 million years ago. One potential reason is that the more densely packed canopy structure of the post-impact era increased competition among plants, "leading to the vertical complexity seen in modern rainforests," the researchers wrote.

The extinction of long-necked, leaf-eating dinosaurs probably helped maintain this closed-canopy structure. Also boosting biodiversity was ash from the impact, which effectively fertilized the soil by adding more phosphorus. This likely benefited flowering plants over the conifers and ferns of the pre-impact era.

In addition to unraveling some of the mysteries about the origins of South America's lush biodiversity, the findings highlight how, even though life finds a way to recover from catastrophe, it can take a long time.

Archaeologists identify contents of ancient Mayan drug containers

Scientists use new methods to discover what's inside drug containers used by ancient Mayan people.

A Muna-type paneled flask with distinctive serrated-edge decoration from AD 750-900.

Credit: WSU
Surprising Science
  • Archaeologists used new methods to identify contents of Mayan drug containers.
  • They were able to discover a non-tobacco plant that was mixed in by the smoking Mayans.
  • The approach promises to open up new frontiers in the knowledge of substances ancient people consumed.
Keep reading Show less

The strange case of the dead-but-not-dead Tibetan monks

For some reason, the bodies of deceased monks stay "fresh" for a long time.

Credit: MICHEL/Adobe Stock
Surprising Science
  • The bodies of some Tibetan monks remain "fresh" after what appears to be their death.
  • Their fellow monks say they're not dead yet but in a deep, final meditative state called "thukdam."
  • Science has not found any evidence of lingering EEG activity after death in thukdam monks.
Keep reading Show less

What do Olympic gymnasts and star-forming clouds have in common?

When Olympic athletes perform dazzling feats of athletic prowess, they are using the same principles of physics that gave birth to stars and planets.

Credit: sportpoint via Adobe Stock
13-8
  • Much of the beauty of gymnastics comes from the physics principle called the conservation of angular momentum.
  • Conservation of angular momentum tells us that when a spinning object changes how its matter is distributed, it changes its rate of spin.
  • Conservation of angular momentum links the formation of planets in star-forming clouds to the beauty of a gymnast's spinning dismount from the uneven bars.
Keep reading Show less
Culture & Religion

Of spies and wars: the secret history of tea

How the British obsession with tea triggered wars, led to bizarre espionage, and changed the world — many times.

Quantcast