Scientists see 'rarest event ever recorded' in search for dark matter

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Scientists see 'rarest event ever recorded' in search for dark matter
Image source: Pixabay
  • In Italy, a team of scientists is using a highly sophisticated detector to hunt for dark matter.
  • The team observed an ultra-rare particle interaction that reveals the half-life of a xenon-124 atom to be 18 sextillion years.
  • The half-life of a process is how long it takes for half of the radioactive nuclei present in a sample to decay.

Scientists have observed an extremely rare particle physics event using a detector that's hunting for dark matter, the mysterious material that physicists have yet to observe.

In a paper published in the journal Nature, researchers with the XENON Collaboration said they'd observed the radioactive decay of a substance called xenon-124, an isotope of the element xenon — a colorless and odorless noble gas found in tiny amounts in the atmosphere. The event — a "two-neutrino double electron capture" — has eluded scientists for decades.

It happens when "two protons in a nucleus are simultaneously converted into neutrons by the absorption of two electrons from one of the atomic shells and the emission of two electron neutrinos." After this occurs, the event shoots out a predictable cascade of X-rays and Auger electrons that scientists look for using an ultra-sensitive detector, buried about 5,000 feet beneath Italy's Gran Sasso mountain where it's shielded from cosmic rays.

"We have shown that we can observe the rarest events ever recorded," Ethan Brown, a professor of physics at Rensselaer Polytechnic Institute and co-author of the study, told Newsweek. "The key finding is that an isotope formerly thought to be completely stable has now been shown to decay on an unimaginably long timescale."

How long is that timescale? The team estimated that xenon-124's half-life is about 18 sextillion years — or 18,000,000,000,000,000,000,000 years — which is than one trillion times the age of our universe, according to the team. It's the slowest process ever measured directly, the team wrote in a statement.

"It's an amazing to have witnessed this process, and it says that our detector can measure the rarest thing ever recorded," Brown told The Independent.

"We designed the XENON1T experiment to look for dark matter, a new kind of matter that makes up 85 percent of the mass of the universe, but interacts so rarely that it's never been observed," Brown said. "This experiment is so sensitive to very rare events that we can make all kinds of other rare physics measurements. One of those is this decay of xenon-124. Although our primary goal was always the discovery of dark matter, we knew there was a good chance we could see this rare decay, so we set out to do so."

To get that good chance, the team had to expose their detector to a huge amount of xenon atoms by stocking it with 3.2 tons worth of liquid xenon.

"XENON1T is a giant vat of liquid xenon surrounded by light sensors," Brown said. "When dark matter collides in the xenon, or when a radioactive decay occurs inside, we get a tiny flash of light and a little bunch of charge out of the xenon. We measure these with the light sensors and reconstruct everything we can about the original event that caused the light and charge."

Although the team didn't observe dark matter — which is the primary purpose of the detector — the recent observations could help scientists learn more about neutrinos, one of the least understood fundamental particles in the universe.

"It proves that this XENON detector technology we use for dark matter is much more versatile," graduate student Christian Wittweg, Ph.D student at the University of Münster in Germany, told Gizmodo. "We get all these cool analyses... for free after having built an experiment sensitive enough to hunt for dark matter."

The team plans to use its newer XENONnT detector to continue hunting for dark matter, the elusive material that's estimated to comprise about 26.8 percent of all the content in the universe.

COVID-19 amplified America’s devastating health gap. Can we bridge it?

The COVID-19 pandemic is making health disparities in the United States crystal clear. It is a clarion call for health care systems to double their efforts in vulnerable communities.

Willie Mae Daniels makes melted cheese sandwiches with her granddaughter, Karyah Davis, 6, after being laid off from her job as a food service cashier at the University of Miami on March 17, 2020.

Credit: Joe Raedle/Getty Images
Sponsored by Northwell Health
  • The COVID-19 pandemic has exacerbated America's health disparities, widening the divide between the haves and have nots.
  • Studies show disparities in wealth, race, and online access have disproportionately harmed underserved U.S. communities during the pandemic.
  • To begin curing this social aliment, health systems like Northwell Health are establishing relationships of trust in these communities so that the post-COVID world looks different than the pre-COVID one.
Keep reading Show less

Scientists find 'smoking gun' proof of a recent supernova near Earth

A supernova exploded near Earth about 2.5 million years ago, possibly causing an extinction event.

An artist's impression of a supernova.

Credit: NASA/ESA/G. Bacon, STScI
Surprising Science
  • Researchers from the University of Munich find evidence of a supernova near Earth.
  • A star exploded close to our planet about 2.5 million years ago.
  • The scientists deduced this by finding unusual concentrations of isotopes, created by a supernova.
Keep reading Show less

Bruce Lee: How to live successfully in a world with no rules

Shannon Lee shares lessons from her father in her new book, "Be Water, My Friend: The Teachings of Bruce Lee."

Bruce Lee: How to live successfully in a world with no rules ...
Videos
  • Bruce Lee would have turned 80 years old on November 27, 2020. The legendary actor and martial artist's daughter, Shannon Lee, shares some of his wisdom and his philosophy on self help in a new book titled "Be Water, My Friend: The Teachings of Bruce Lee."
  • In this video, Shannon shares a story of the fight that led to her father beginning a deeper philosophical journey, and how that informed his unique expression of martial arts called Jeet Kune Do.
  • One lesson passed down from Bruce Lee was his use and placement of physical symbols as a way to help "cement for yourself this new way of being, or this new lesson you've learned." By working on ourselves (with the right tools), we can develop the skills necessary to rise and conquer new challenges.
Keep reading Show less

3 reasons for information exhaustion – and what to do about it

How to deal with "epistemic exhaustion."

Photo by Filip Mishevski on Unsplash
Mind & Brain
An endless flow of information is coming at us constantly: It might be an article a friend shared on Facebook with a sensational headline or wrong information about the spread of the coronavirus.
Keep reading Show less
Culture & Religion

Top 5 theories on the enigmatic monolith found in Utah desert

A strange object found in Utah desert has prompted worldwide speculation about its origins.

Scroll down to load more…
Quantcast