There is no dark matter. Instead, information has mass, physicist says

Is information the fifth form of matter?

Information in the universe. Is information the fifth form of matter?
Photo: Shutterstock
  • Researchers have been trying for over 60 years to detect dark matter.
  • There are many theories about it, but none are supported by evidence.
  • The mass-energy-information equivalence principle combines several theories to offer an alternative to dark matter.

The  “discovery” of dark matter

We can tell how much matter is in the universe by the motions of the stars. In the1920s, physicists attempting to do so discovered a discrepancy and concluded that there must be more matter in the universe than is detectable. How can this be?

In 1933, Swiss astronomer Fritz Zwicky, while observing the motion of galaxies in the Coma Cluster, began wondering what kept them together. There wasn't enough mass to keep the galaxies from flying apart. Zwicky proposed that some kind of dark matter provided cohesion. But since he had no evidence, his theory was quickly dismissed.

Then, in 1968, astronomer Vera Rubin made a similar discovery. She was studying the Andromeda Galaxy at Kitt Peak Observatory in the mountains of southern Arizona when she came across something that puzzled her. Rubin was examining Andromeda's rotation curve, or the speed at which the stars around the center rotate, and realized that the stars on the outer edges moved at the exact same rate as those at the interior, violating Newton's laws of motion. This meant there was more matter in the galaxy than was detectable. Her punch card readouts are today considered the first evidence of the existence of dark matter.

Many other galaxies were studied throughout the '70s. In each case, the same phenomenon was observed. Today, dark matter is thought to comprise up to 27% of the universe. "Normal" or baryonic matter makes up just 5%. That's the stuff we can detect. Dark energy, which we can't detect either, makes up 68%.

Dark energy is what accounts for the Hubble Constant, or the rate at which the universe is expanding. Dark matter on the other hand, affects how "normal" matter clumps together. It stabilizes galaxy clusters. It also affects the shape of galaxies, their rotation curves, and how stars move within them. Dark matter even affects how galaxies influence one another.

Leading theories on dark matter

NASA writes: 'This graphic represents a slice of the spider-web-like structure of the universe, called the "cosmic web." These great filaments are made largely of dark matter located in the space between galaxies.'

Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder)

Since the '70s, astronomers and physicists have been unable to identify any evidence of dark matter. One theory is it's all tied up in space-bound objects called MACHOs (Massive Compact Halo Objects). These include black holes, supermassive black holes, brown dwarfs, and neutron stars.

Another theory is that dark matter is made up of a type of non-baryonic matter, called WIMPS (Weakly Interacting Massive Particles). Baryonic matter is the kind made up of baryons, such as protons and neutrons and everything composed of them, which is anything with an atomic nucleus. Electrons, neutrinos, muons, and tau particles aren't baryons, however, but a class of particles called leptons. Even though the (hypothetical) WIMPS would have ten to a hundred times the mass of a proton, their interactions with normal matter would be weak, making them hard to detect.

Then there are those aforementioned neutrinos. Did you know that giant streams of them pass from the Sun through the Earth each day, without us ever noticing? They're the focus of another theory that says that neutral neutrinos, that only interact with normal matter through gravity, are what dark matter is comprised of. Other candidates include two theoretical particles, the neutral axion and the uncharged photino.

Now, one theoretical physicist posits an even more radical notion. What if dark matter didn't exist at all? Dr. Melvin Vopson of the University of Portsmouth, in the UK, has a hypothesis he calls the mass-energy-information equivalence. It states that information is the fundamental building block of the universe, and it has mass. This accounts for the missing mass within galaxies, thus eliminating the hypothesis of dark matter entirely.

Information theory 

To be clear, the idea that information is an essential building block of the universe isn't new. Classical Information Theory was first posited by Claude Elwood Shannon, the "father of the digital age" in the mid-20th century. The mathematician and engineer, well-known in scientific circles—but not so much outside of them, had a stroke of genius back in 1940. He realized that Boolean algebra coincided perfectly with telephone switching circuits. Soon, he proved that mathematics could be employed to design electrical systems.

Shannon was hired at Bell Labs to figure out how to transfer information over a system of wires. He wrote the bible on using mathematics to set up communication systems, thereby laying the foundation for the digital age. Shannon was also the first to define one unit of information as a bit.

There was perhaps no greater proponent of information theory than another unsung paragon of science, John Archibald Wheeler. Wheeler was part of the Manhattan Project, worked out the "S-Matrix" with Niels Bohr and helped Einstein develop a unified theory of physics. In his later years, he proclaimed, "Everything is information." Then he went about exploring connections between quantum mechanics and information theory.

He also coined the phrase "it from bit" or that every particle in the universe emanates from the information locked inside it. At the Santa Fe Institute in 1989, Wheeler announced that everything, from particles to forces to the fabric of spacetime itself "… derives its function, its meaning, its very existence entirely … from the apparatus-elicited answers to yes-or-no questions, binary choices, bits."

Part Einstein, part Landauer 

Vopson takes this notion one step further. He says that not only is information the essential unit of the universe but also that it is energy and has mass. To support this claim, he unifies and coordinates special relativity with the Landauer Principle. The latter is named after Rolf Landauer. In 1961, he predicted that erasing even one bit of information would release a tiny amount of heat, a figure which he calculated. Landauer said this proves information is more than just a mathematical quantity. This connects information to energy. Through experimental testing over the years, the Landauer Principle has held up.

Vopson says, "He [Landauer] first identified the link between thermodynamics and information by postulating that logical irreversibility of a computational process implies physical irreversibility." This indicates that information is physical, Vopson says, and demonstrates the link between information theory and thermodynamics.

In Vopson's theory, information, once created has "finite and quantifiable mass." It so far applies only to digital systems, but could very well apply to analogue and biological ones too, and even quantum or relativistic-moving systems. "Relativity and quantum mechanics are possible future directions of the mass-energy-information equivalence principle," he says.

In the paper published in the journal AIP Advances, Vopson outlines the mathematical basis for his hypothesis. "I am the first to propose the mechanism and the physics by which information acquires mass," he said, "as well as to formulate this powerful principle and to propose a possible experiment to test it."

The fifth state of matter

To measure the mass of digital information, you start with an empty data storage device. Next, you measure its total mass with a highly sensitive measuring apparatus. Then, you fill it and determine its mass. Next, you erase one file and evaluate it again. The trouble is, the "ultra-accurate mass measurement" device the paper describes doesn't exist yet. This would be an interferometer, something similar to LIGO. Or perhaps an ultrasensitive weighing machine akin to a Kibble balance.

"Currently, I am in the process of applying for a small grant, with the main objective of designing such an experiment, followed by calculations to check if detection of these small mass changes is even possible," Vopson says. "Assuming the grant is successful and the estimates are positive, then a larger international consortium could be formed to undertake the construction of the instrument." He added, "This is not a workbench laboratory experiment, and it would most likely be a large and costly facility." If eventually proved correct, Vopson will have discovered the fifth form of matter.

So, what's the connection to dark matter? Vopson says, "M.P. Gough published an article in 2008 in which he worked out … the number of bits of information that the visible universe would contain to make up all the missing dark matter. It appears that my estimates of information bit content of the universe are very close to his estimates."

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source:

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source:

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source:

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

Surprising Science
Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.
Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less