The spread of ancient infectious diseases offers insight into COVID-19

Archaeology clues us in on the dangers of letting viruses hang around.

The spread of ancient infectious diseases offers insight into COVID-19
Credit: ImageFlow/ Shutterstock
  • A University of Otago researcher investigates the spread of disease in ancient Vietnam.
  • The infectious disease, yaws, has been with us for thousands of years with no known cure.
  • Using archaeology to investigate disease offers clues into modern-day pandemics.

Humans are accustomed to progress. We can travel to the planet's farthest reaches in a matter of hours—a day, at most. Imagining otherwise is impossible. Sure, we can think about it, but our scope of time is limited to generations, not epochs.

Witness our incredulity today. COVID-19 has revealed the impatience that immediately surfaces when we're told not to do something. Though diseases have wiped out entire populations in the past, we've come to expect solutions to instantaneously appear. History is long; our awareness of history, not so much.

For most of time, the geographic range of our ancestors was tiny. Even the dozens of miles hunter-gathering tribes traveled pales in comparison to pond-hopping in a plane. Geotagging travel photos took a few billion years to arrive; so did pandemics, in fact. Like humans, diseases generally remained local, spread only as far as your tribe traveled.

Not that diseases didn't exist. Viruses tumbled around the planet shortly after single-celled organisms emerged from the strange brew of Earth's initial gases and liquids. In some ways, we're returning to that past. Climate change is unlocking diseases our collective consciousness thought it left behind. Recently, an intact extinct cave bear, dating back nearly 40,000 years, was discovered in Siberia. Researchers had better wear protective gear: shifting temperatures are unlocking long-forgotten pathogens. Who knows what fury that beast wants to unleash.

Our relationship to disease changed after the last Ice Age ended roughly 12,000 years ago. The Pleistocene Epoch lasted roughly 2.5 million years; the conditions for mass gatherings did not yet exist. As we packed closer together, and as we packed other species close to us, viruses began circulating broadly.

Everything in life is a trade-off. The price of cities is recurring battles with coronaviruses.

History-Changing Archaeological Finds

While we rightfully look toward infectious disease experts during times such as now, archaeologists also have plenty to offer. A new research article, published in the journal, Bioarchaeology Journal, turns back the clock to ancient Vietnam. The findings offer important clues about why we need to eradicate COVID-19.

Lead author Melandri Vlok, a PhD student at the University of Otago in New Zealand (with support from researchers in Australia, Vietnam, Japan, and the UK), investigated a case of yaws that ran through the Neolithic archeological site of Mán Bạc in Northeast Vietnam.

Yaws remains a common infectious disease in at least 13 tropical countries, with up to a half-million infected each year. Hard skin lesions form on the victim's bodies; they can form painful ulcers. While lesions usually subside within six months, bone and joint pain and fatigue are common. Some cases last many years and result in permanent scars. On occasion, death follows a long battle.

Subsistence farmers in mainland China have long battled the environment. Finding the right soil and water sources for their crops has been a generational battle. Roughly 4,000 years ago, such farmers made their way into Mainland Southeast China (modern day Vietnam), where, as Vlok writes, "genetic admixture and social transition occurs between foragers and farmers." In 2018, Vlok traveled to Mán Bạc to study the remains of seven skeletons, which included two adults, two adolescents, and two children.

Her findings help give us perspective on today's proliferation of the coronavirus. As she says,

"This matters, because knowing more about this disease and its evolution, it changes how we understand the relationship people have with it. It helps us understand why it's so difficult to eradicate. If it's been with us thousands of years it has probably developed to fit very well with humans."

My Son Sanctuary

My Son Sanctuary, Quang Nam, Vietnam.

Credit: Mrkela / Shutterstock

Yaws is not the only disease considered in the article. Tuberculosis, brucellosis, and cancers were also discussed. The goal of the research was to identify disease spread through cultures and the chronic problems left behind, sometimes for millennia. Vlok notes how temperature fluctuations in the Mán Bạc region affected a variety of diseases. Yaws appeared to have spread easily due to an abundance of water and vegetation, combined with increased population density—children are more likely to spread this disease.

"Pre-industrialized agricultural communities have also been associated with increased incidence of yaws. The coastal region is also slightly warmer and more humid than inland northern Vietnam and therefore more conducive to the spread of yaws."

The Climate Clock is ticking down. We're already experiencing the ravages of this global shift, and it's not going to get any easier if interventions are not immediately legislated. While no single science will help us wrap our heads around the immediate future, Vlok suggests factoring in archaeology. Past precedent matters.

Gazing back a few hundred generations offers important clues for the future—really, the present—that we must confront. A concerted effort by the World Health Organization in the 1950s couldn't eradicate yaws. Diseases that have an opportunity to hang around will exploit every advantage it can. The blasé attitude too many Americans currently hold about the novel coronavirus's dangers is going to have a reverberating effect through the generations. As Vlok concludes,

"This shows us what happens when we don't take action with these diseases. It's a lesson of what infectious diseases can do to a population if you let them spread widely. It highlights the need to intervene, because sometimes these diseases are so good at adapting to us, at spreading between us."

--

Stay in touch with Derek on Twitter, Facebook and Substack. His next book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Meet Dr. Jennifer Doudna: she's leading the biotech revolution

She helped create CRISPR, a gene-editing technology that is changing the way we treat genetic diseases and even how we produce food.

Courtesy of Jennifer Doudna
Technology & Innovation

This article was originally published on our sister site, Freethink.

Last year, Jennifer Doudna and Emmanuelle Charpentier became the first all-woman team to win the Nobel Prize in Chemistry for their work developing CRISPR-Cas9, the gene-editing technology. The technology was invented in 2012 — and nine years later, it's truly revolutionizing how we treat genetic diseases and even how we produce food.

CRISPR allows scientists to alter DNA by using proteins that are naturally found in bacteria. They use these proteins, called Cas9, to naturally fend off viruses, destroying the virus' DNA and cutting it out of their genes. CRISPR allows scientists to co-opt this function, redirecting the proteins toward disease-causing mutations in our DNA.

So far, gene-editing technology is showing promise in treating sickle cell disease and genetic blindness — and it could eventually be used to treat all sorts of genetic diseases, from cancer to Huntington's Disease.

The biotech revolution is just getting started — and CRISPR is leading the charge. We talked with Doudna about what we can expect from genetic engineering in the future.

This interview has been lightly edited and condensed for clarity.

Freethink: You've said that your journey to becoming a scientist had humble beginnings — in your teenage bedroom when you discovered The Double Helix by Jim Watson. Back then, there weren't a lot of women scientists — what was your breakthrough moment in realizing you could pursue this as a career?

Dr. Jennifer Doudna: There is a moment that I often think back to from high school in Hilo, Hawaii, when I first heard the word "biochemistry." A researcher from the UH Cancer Center on Oahu came and gave a talk on her work studying cancer cells.

I didn't understand much of her talk, but it still made a huge impact on me. You didn't see professional women scientists in popular culture at the time, and it really opened my eyes to new possibilities. She was very impressive.

I remember thinking right then that I wanted to do what she does, and that's what set me off on the journey that became my career in science.

Freethink: The term "CRISPR" is everywhere in the media these days but it's a really complicated tool to describe. What is the one thing that you wish people understood about CRISPR that they usually get wrong?

Dr. Jennifer Doudna: People should know that CRISPR technology has revolutionized scientific research and will make a positive difference to their lives.

Researchers are gaining incredible new understanding of the nature of disease, evolution, and are developing CRISPR-based strategies to tackle our greatest health, food, and sustainability challenges.

Freethink: You previously wrote in Wired that this year, 2021, is going to be a big year for CRISPR. What exciting new developments should we be on the lookout for?

Dr. Jennifer Doudna: Before the COVID-19 pandemic, there were multiple teams around the world, including my lab and colleagues at the Innovative Genomics Institute, working on developing CRISPR-based diagnostics.

Traits that we could select for using traditional breeding methods, that might take decades, we can now engineer precisely in a much shorter time. — DR. JENNIFER DOUDNA

When the pandemic hit, we pivoted our work to focus these tools on SARS-CoV-2. The benefit of these new diagnostics is that they're fast, cheap, can be done anywhere without the need for a lab, and they can be quickly modified to detect different pathogens. I'm excited about the future of diagnostics, and not just for pandemics.

We'll also be seeing more CRISPR applications in agriculture to help combat hunger, reduce the need for toxic pesticides and fertilizers, fight plant diseases and help crops adapt to a changing climate.

Traits that we could select for using traditional breeding methods, that might take decades, we can now engineer precisely in a much shorter time.

Freethink: Curing genetic diseases isn't a pipedream anymore, but there are still some hurdles to cross before we're able to say for certain that we can do this. What are those hurdles and how close do you think we are to crossing them?

Dr. Jennifer Doudna: There are people today, like Victoria Gray, who have been successfully treated for sickle cell disease. This is just the tip of the iceberg.

There are absolutely still many hurdles. We don't currently have ways to deliver genome-editing enzymes to all types of tissues, but delivery is a hot area of research for this very reason.

We also need to continue improving on the first wave of CRISPR therapies, as well as making them more affordable and accessible.

Freethink: Another big challenge is making this technology widely available to everyone and not just the really wealthy. You've previously said that this challenge starts with the scientists.

Dr. Jennifer Doudna: A sickle cell disease cure that is 100 percent effective but can't be accessed by most of the people in need is not really a full cure.

This is one of the insights that led me to found the Innovative Genomics Institute back in 2014. It's not enough to develop a therapy, prove that it works, and move on. You have to develop a therapy that actually meets the real-world need.

Too often, scientists don't fully incorporate issues of equity and accessibility into their research, and the incentives of the pharmaceutical industry tend to run in the opposite direction. If the world needs affordable therapy, you have to work toward that goal from the beginning.

Freethink: You've expressed some concern about the ethics of using CRISPR. Do you think there is a meaningful difference between enhancing human abilities — for example, using gene therapy to become stronger or more intelligent — versus correcting deficiencies, like Type 1 diabetes or Huntington's?

Dr. Jennifer Doudna: There is a meaningful distinction between enhancement and treatment, but that doesn't mean that the line is always clear. It isn't.

There's always a gray area when it comes to complex ethical issues like this, and our thinking on this is undoubtedly going to evolve over time.

What we need is to find an appropriate balance between preventing misuse and promoting beneficial innovation.

Freethink: What if it turns out that being physically stronger helps you live a longer life — if that's the case, are there some ways of improving health that we should simply rule out?

Dr. Jennifer Doudna: The concept of improving the "healthspan" of individuals is an area of considerable interest. Eliminating neurodegenerative disease will not only massively reduce suffering around the world, but it will also meaningfully increase the healthy years for millions of individuals.

There is a meaningful distinction between enhancement and treatment, but that doesn't mean that the line is always clear. It isn't. — DR. JENNIFER DOUDNA

There will also be knock-on effects, such as increased economic output, but also increased impact on the planet.

When you think about increasing lifespans just so certain people can live longer, then not only do those knock-on effects become more central, you also have to ask who is benefiting and who isn't? Is it possible to develop this technology so the benefits are shared equitably? Is it environmentally sustainable to go down this road?

Freethink: Where do you see it going from here?

Dr. Jennifer Doudna: The bio revolution will allow us to create breakthroughs in treating not just a few but whole classes of previously unaddressed genetic diseases.

We're also likely to see genome editing play a role not just in climate adaptation, but in climate change solutions as well. There will be challenges along the way both expected and unexpected, but also great leaps in progress and benefits that will move society forward. It's an exciting time to be a scientist.

Freethink: If you had to guess, what is the first disease you think we are most likely to cure, in the real world, with CRISPR?

Dr. Jennifer Doudna: Because of the progress that has already been made, sickle cell disease and beta-thalassemia are likely to be the first diseases with a CRISPR cure, but we're closely following the developments of other CRISPR clinical trials for types of cancer, a form of congenital blindness, chronic infection, and some rare genetic disorders.

The pace of clinical trials is picking up, and the list will be longer next year.

Ancient megalodon shark was even bigger than estimated, finds study

A school lesson leads to more precise measurements of the extinct megalodon shark, one of the largest fish ever.

Megalodon attacks a seal.

Credit: Catmando / Adobe Stock.
Surprising Science
  • A new method estimates the ancient megalodon shark was as long as 65 feet.
  • The megalodon was one of the largest fish that ever lived.
  • The new model uses the width of shark teeth to estimate its overall size.
Keep reading Show less
Quantcast