The spread of ancient infectious diseases offers insight into COVID-19

Archaeology clues us in on the dangers of letting viruses hang around.

The spread of ancient infectious diseases offers insight into COVID-19
Credit: ImageFlow/ Shutterstock
  • A University of Otago researcher investigates the spread of disease in ancient Vietnam.
  • The infectious disease, yaws, has been with us for thousands of years with no known cure.
  • Using archaeology to investigate disease offers clues into modern-day pandemics.

Humans are accustomed to progress. We can travel to the planet's farthest reaches in a matter of hours—a day, at most. Imagining otherwise is impossible. Sure, we can think about it, but our scope of time is limited to generations, not epochs.

Witness our incredulity today. COVID-19 has revealed the impatience that immediately surfaces when we're told not to do something. Though diseases have wiped out entire populations in the past, we've come to expect solutions to instantaneously appear. History is long; our awareness of history, not so much.

For most of time, the geographic range of our ancestors was tiny. Even the dozens of miles hunter-gathering tribes traveled pales in comparison to pond-hopping in a plane. Geotagging travel photos took a few billion years to arrive; so did pandemics, in fact. Like humans, diseases generally remained local, spread only as far as your tribe traveled.

Not that diseases didn't exist. Viruses tumbled around the planet shortly after single-celled organisms emerged from the strange brew of Earth's initial gases and liquids. In some ways, we're returning to that past. Climate change is unlocking diseases our collective consciousness thought it left behind. Recently, an intact extinct cave bear, dating back nearly 40,000 years, was discovered in Siberia. Researchers had better wear protective gear: shifting temperatures are unlocking long-forgotten pathogens. Who knows what fury that beast wants to unleash.

Our relationship to disease changed after the last Ice Age ended roughly 12,000 years ago. The Pleistocene Epoch lasted roughly 2.5 million years; the conditions for mass gatherings did not yet exist. As we packed closer together, and as we packed other species close to us, viruses began circulating broadly.

Everything in life is a trade-off. The price of cities is recurring battles with coronaviruses.

History-Changing Archaeological Finds

While we rightfully look toward infectious disease experts during times such as now, archaeologists also have plenty to offer. A new research article, published in the journal, Bioarchaeology Journal, turns back the clock to ancient Vietnam. The findings offer important clues about why we need to eradicate COVID-19.

Lead author Melandri Vlok, a PhD student at the University of Otago in New Zealand (with support from researchers in Australia, Vietnam, Japan, and the UK), investigated a case of yaws that ran through the Neolithic archeological site of Mán Bạc in Northeast Vietnam.

Yaws remains a common infectious disease in at least 13 tropical countries, with up to a half-million infected each year. Hard skin lesions form on the victim's bodies; they can form painful ulcers. While lesions usually subside within six months, bone and joint pain and fatigue are common. Some cases last many years and result in permanent scars. On occasion, death follows a long battle.

Subsistence farmers in mainland China have long battled the environment. Finding the right soil and water sources for their crops has been a generational battle. Roughly 4,000 years ago, such farmers made their way into Mainland Southeast China (modern day Vietnam), where, as Vlok writes, "genetic admixture and social transition occurs between foragers and farmers." In 2018, Vlok traveled to Mán Bạc to study the remains of seven skeletons, which included two adults, two adolescents, and two children.

Her findings help give us perspective on today's proliferation of the coronavirus. As she says,

"This matters, because knowing more about this disease and its evolution, it changes how we understand the relationship people have with it. It helps us understand why it's so difficult to eradicate. If it's been with us thousands of years it has probably developed to fit very well with humans."

My Son Sanctuary

My Son Sanctuary, Quang Nam, Vietnam.

Credit: Mrkela / Shutterstock

Yaws is not the only disease considered in the article. Tuberculosis, brucellosis, and cancers were also discussed. The goal of the research was to identify disease spread through cultures and the chronic problems left behind, sometimes for millennia. Vlok notes how temperature fluctuations in the Mán Bạc region affected a variety of diseases. Yaws appeared to have spread easily due to an abundance of water and vegetation, combined with increased population density—children are more likely to spread this disease.

"Pre-industrialized agricultural communities have also been associated with increased incidence of yaws. The coastal region is also slightly warmer and more humid than inland northern Vietnam and therefore more conducive to the spread of yaws."

The Climate Clock is ticking down. We're already experiencing the ravages of this global shift, and it's not going to get any easier if interventions are not immediately legislated. While no single science will help us wrap our heads around the immediate future, Vlok suggests factoring in archaeology. Past precedent matters.

Gazing back a few hundred generations offers important clues for the future—really, the present—that we must confront. A concerted effort by the World Health Organization in the 1950s couldn't eradicate yaws. Diseases that have an opportunity to hang around will exploit every advantage it can. The blasé attitude too many Americans currently hold about the novel coronavirus's dangers is going to have a reverberating effect through the generations. As Vlok concludes,

"This shows us what happens when we don't take action with these diseases. It's a lesson of what infectious diseases can do to a population if you let them spread widely. It highlights the need to intervene, because sometimes these diseases are so good at adapting to us, at spreading between us."

--

Stay in touch with Derek on Twitter, Facebook and Substack. His next book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

Astronomers find more than 100,000 "stellar nurseries"

Every star we can see, including our sun, was born in one of these violent clouds.

Credit: NASA / ESA via Getty Images
Surprising Science

This article was originally published on our sister site, Freethink.

An international team of astronomers has conducted the biggest survey of stellar nurseries to date, charting more than 100,000 star-birthing regions across our corner of the universe.

Stellar nurseries: Outer space is filled with clouds of dust and gas called nebulae. In some of these nebulae, gravity will pull the dust and gas into clumps that eventually get so big, they collapse on themselves — and a star is born.

These star-birthing nebulae are known as stellar nurseries.

The challenge: Stars are a key part of the universe — they lead to the formation of planets and produce the elements needed to create life as we know it. A better understanding of stars, then, means a better understanding of the universe — but there's still a lot we don't know about star formation.

This is partly because it's hard to see what's going on in stellar nurseries — the clouds of dust obscure optical telescopes' view — and also because there are just so many of them that it's hard to know what the average nursery is like.

The survey: The astronomers conducted their survey of stellar nurseries using the massive ALMA telescope array in Chile. Because ALMA is a radio telescope, it captures the radio waves emanating from celestial objects, rather than the light.

"The new thing ... is that we can use ALMA to take pictures of many galaxies, and these pictures are as sharp and detailed as those taken by optical telescopes," Jiayi Sun, an Ohio State University (OSU) researcher, said in a press release.

"This just hasn't been possible before."

Over the course of the five-year survey, the group was able to chart more than 100,000 stellar nurseries across more than 90 nearby galaxies, expanding the amount of available data on the celestial objects tenfold, according to OSU researcher Adam Leroy.

New insights: The survey is already yielding new insights into stellar nurseries, including the fact that they appear to be more diverse than previously thought.

"For a long time, conventional wisdom among astronomers was that all stellar nurseries looked more or less the same," Sun said. "But with this survey we can see that this is really not the case."

"While there are some similarities, the nature and appearance of these nurseries change within and among galaxies," he continued, "just like cities or trees may vary in important ways as you go from place to place across the world."

Astronomers have also learned from the survey that stellar nurseries aren't particularly efficient at producing stars and tend to live for only 10 to 30 million years, which isn't very long on a universal scale.

Looking ahead: Data from the survey is now publicly available, so expect to see other researchers using it to make their own observations about stellar nurseries in the future.

"We have an incredible dataset here that will continue to be useful," Leroy said. "This is really a new view of galaxies and we expect to be learning from it for years to come."

Protecting space stations from deadly space debris

Tiny specks of space debris can move faster than bullets and cause way more damage. Cleaning it up is imperative.

Videos
  • NASA estimates that more than 500,000 pieces of space trash larger than a marble are currently in orbit. Estimates exceed 128 million pieces when factoring in smaller pieces from collisions. At 17,500 MPH, even a paint chip can cause serious damage.
  • To prevent this untrackable space debris from taking out satellites and putting astronauts in danger, scientists have been working on ways to retrieve large objects before they collide and create more problems.
  • The team at Clearspace, in collaboration with the European Space Agency, is on a mission to capture one such object using an autonomous spacecraft with claw-like arms. It's an expensive and very tricky mission, but one that could have a major impact on the future of space exploration.

This is the first episode of Just Might Work, an original series by Freethink, focused on surprising solutions to our biggest problems.

Catch more Just Might Work episodes on their channel:
https://www.freethink.com/shows/just-might-work

Personal Growth

Meet the worm with a jaw of metal

Metal-like materials have been discovered in a very strange place.

Quantcast