New cancer ‘vaccine’ helps immune system find, kill disease

"We inject one tumor and we see all of the other tumors just melt away."

New cancer ‘vaccine’ helps immune system find, kill disease
Pixabay
  • In a recent clinical trial, three of 11 patients saw significant regression or complete remission of lymphoma.
  • The approach is an immunotherapy, a relatively young field in cancer research that involves directing the immune system to kill cancer cells on its own.
  • The researchers suggested their approach might improve the efficacy of existing immunotherapies.

Promising results from a recent medical trial suggest scientists might soon be able to redirect the immune system to destroy cancer.

The immunotherapy approach — dubbed "in situ vaccination" by researchers at Mount Sinai — works somewhat similar to a vaccine. In the study, published in the journal Nature on April 8, 11 participants had one of their tumors injected with a steroid that recruits dendritic cells to the site. The participants then underwent a low dose of radiation, and were also given another stimulant to activate the dendritic cells, which then direct cancer-fighting T-cells to kill any tumors they encounter throughout the body.

"We're injecting two immune stimulants right into one single tumor," senior researcher Dr. Joshua Brody told HealthDay. "We inject one tumor and we see all of the other tumors just melt away."

It's too early to know exactly what to make of the results, however, and only three of the 11 patients saw their disease (non-Hodgkin's lymphoma) go into significant regression or complete remission. Still, cancer was halted in six of the patients for three to 18 months.

"It's really promising, and the fact you get not only responses in treated areas, but areas outside the field [of treatment with radiation] is really significant," Dr. Silvia Formenti, chairwoman of radiation oncology at Weill Cornell Medicine and NewYork-Presbyterian, who wasn't involved in the study, told CNBC.

Why immunotherapies are the focus of intense study

Immunotherapy is a relatively young field in cancer research. It's gained traction in recent years because of its alluring promise: kill cancer not with harmful, dangerous drugs or radiation, but rather by harnessing the power of the body's immune system.

In 2018, James Allison and Tasuku Honjo won the 2018 Nobel Prize in Physiology or Medicine for their innovative work in developing immunotherapy treatments and for bringing them closer to mainstream acceptance and study.

"Allison's and Honjo's discoveries have added a new pillar in cancer therapy. It represents a completely new principle, because unlike previous strategies, it is not based on targeting the cancer cells, but rather the brakes — the checkpoints — of the host immune system," Klas Kärre, a member of the Nobel Committee and an immunologist at the Karolinska Institute in Stockholm, said in a statement. "The seminal discoveries by the two laureates constitutes a paradigmatic shift and a landmark in the fight against cancer."

There are multiple types of immunotherapy. The one Kärre describes here is called checkpoint blockade, the approach that put former President Jimmy Carter's melanoma in remission in 2015. This immunotherapy technique involves administering drugs that release the immune system's "brakes" which, as the National Cancer Institute describes, "keep T cells (a type of white blood cell and part of the immune system) from killing cancer cells. These drugs do not target the tumor directly. Instead, they interfere with the ability of cancer cells to avoid immune system attack."

The recent clinical trial was only conducted on patients with lymphoma, but the researchers suggested their approach could be potentially used to treat other types of cancer — and that it could improve the efficacy of other immunotherapies, including checkpoint blockade.

"The in situ vaccine approach has broad implications for multiple types of cancer," said Brody, the study's lead author and the director of the Lymphoma Immunotherapy Program at The Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai. "This method could also increase the success of other immunotherapies such as checkpoint blockade."

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Modern society is as unequal as 14th century Europe

As bad as this sounds, a new essay suggests that we live in a surprisingly egalitarian age.

"Philosophy Presenting the Seven Liberal Arts to Boethius"

Getty Open Content
Politics & Current Affairs
  • A new essay depicts 700 years of economic inequality in Europe.
  • The only stretch of time more egalitarian than today was the period between 1350 to approximately the year 1700.
  • Data suggest that, without intervention, inequality does not decrease on its own.
Keep reading Show less

You are suffering from “tab overload”

Our love-hate relationship with browser tabs drives all of us crazy. There is a solution.

Photo by Anna Shvets from Pexels
Technology & Innovation
  • A new study suggests that tabs can cause people to be flustered as they try to keep track of every website.
  • The reason is that tabs are unable to properly organize information.
  • The researchers are plugging a browser extension that aims to fix the problem.
Keep reading Show less
Personal Growth

Epicurus and the atheist's guide to happiness

Seek pleasure and avoid pain. Why make it more complicated?

Quantcast