Study: 'Mighty mice' stayed strong in space with gene treatment

Targeting a signaling pathway in mice helped them retain muscle and bone mass aboard the International Space Station, according to a new study.

mouse

Lab mouse

Pixabay
  • Losing bone and muscle mass in space is a major health concern for astronauts.
  • In a recent study, scientists genetically altered mice and sent them to the International Space Station.
  • The genetically altered mice retained — or even gained — muscle and bone mass, while a control group suffered significant losses.

Living in microgravity aboard the International Space Station (ISS) might seem like it'd be gentle on the human body, but it's not. Without gravity, the musculoskeletal system starts to atrophy because it no longer needs to support any weight. And even though regular exercise in space keeps astronauts in decent shape, bone and muscle loss remains a major health concern for long-term space missions.

A new study published in the Proceedings of the National Academy of Sciences suggests that targeting a specific signaling pathway in the body can help prevent bone and muscle loss in space.

The study involved sending 40 mice to the ISS for a month-long stay. Eight of the mice were missing the gene for myostatin, a protein known to inhibit muscle growth. Another eight mice were given a treatment that suppresses myostatin and the protein activin A, which also helps to regulate muscle mass. The rest of the mice (24) were left untreated as a control group.

Mice space study

Comparison of bone density loss between the mice groups.

(Image credit: Se-Jin Lee)

Upon return to Earth, the untreated mice showed significant losses in muscle mass and bone density. But the mice missing the myostatin gene retained almost all of their muscle and bone mass. What's more, the mice that received the gene-inhibiting treatment actually gained bone and muscle mass. The researchers observed similar results among a separate group of mice that were given the same set of treatments on Earth.

"These findings show that blocking the activities of these hormones does work to enhance both muscle and bone even when mice are unable to bear weight," study authors Se-Jin Lee and Emily L. Germain-Lee told CNN.

"One thing that we found somewhat surprising is how resilient mice are even when subjected to all of the stresses associated with space travel. We knew that mice had been sent to space in the past, but we still found it remarkable that after spending a month at the ISS, they seemed to resume normal activity very quickly after returning to Earth."

astronaut aboard ISS

Pixabay

Treatments like these could protect astronauts on future long-term space missions. After all, studies show that spending just 16 to 28 weeks in space can cause a 3.5-percent loss in bone density, so space agencies are understandably concerned about the health risks of sending astronauts on a three-year mission to Mars.

Applications on Earth

The researchers also noted that "this strategy may be effective in preventing or treating muscle and bone loss not only in astronauts on prolonged missions but also in people with disuse atrophy on Earth, such as in older adults or in individuals who are bedridden or wheelchair-bound from illness."

Still, the experiment was done on mice, so it's not clear whether the treatment would have the same effects on humans. It's also unclear what other side effects the treatment might have on humans. Answering these questions will take some time.

"We're years away," Germain-Lee told Phys Org. "But that's how everything is when you go from mouse to human studies."


How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

3,000-pound Triceratops skull unearthed in South Dakota

"You dream about these kinds of moments when you're a kid," said lead paleontologist David Schmidt.

Excavation of a triceratops skull in South Dakota.

Credit: David Schmidt / Westminster College
Surprising Science
  • The triceratops skull was first discovered in 2019, but was excavated over the summer of 2020.
  • It was discovered in the South Dakota Badlands, an area where the Triceratops roamed some 66 million years ago.
  • Studying dinosaurs helps scientists better understand the evolution of all life on Earth.
Keep reading Show less

World's oldest work of art found in a hidden Indonesian valley

Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

Pig painting at Leang Tedongnge in Indonesia, made at 45,500 years ago.

Credit: Maxime Aubert
Surprising Science
  • Archaeologists find a cave painting of a wild pig that is at least 45,500 years old.
  • The painting is the earliest known work of representational art.
  • The discovery was made in a remote valley on the Indonesian island of Sulawesi.
Keep reading Show less

What can Avicenna teach us about the mind-body problem?

The Persian polymath and philosopher of the Islamic Golden Age teaches us about self-awareness.

Photo by Andrew Spencer on Unsplash
Mind & Brain
Philosophers of the Islamic world enjoyed thought experiments.
Keep reading Show less
Videos

The incredible physics behind quantum computing

Can computers do calculations in multiple universes? Scientists are working on it. Step into the world of quantum computing.

Scroll down to load more…
Quantcast