Are we living in a baby universe that looks like a black hole to outsiders?

Baby universes led to black holes and dark matter, proposes a new study.

Are we living in a baby universe that looks like a black hole to outsiders?

Baby universes could have branched off the main universe after the Big Bang and may appear to us as black holes.

Credit: Kavli IPMU
  • Researchers recently used a huge telescope in Hawaii to study primordial black holes.
  • These black holes might have formed in the early days from baby universes and may be responsible for dark matter.
  • The study also raises the possibility that our own universe may look like a black hole to outside observers.

A new paper takes a deep dive into primordial black holes that were formed as a part of the early universe when there were still no stars or galaxies. Such black holes could account for strange cosmic possibilities, including baby universes and major features of the current state of the cosmos like dark matter.

To study the exotic primordial black holes (PBHs), physicists employed the Hyper Suprime-Cam (HSC) of the huge 8.2m Subaru Telescope operating near the 4,200 meter summit of Mt. Mauna Kea in Hawaii. This enormous digital camera can produce images of the entire Andromeda galaxy every few minutes, helping scientists observe one hundred million stars in one go.

In their study, the scientists considered a number of scenarios, especially linked to the period of inflation. That is the time of quick expansion following the Big Bang, when the universe we know today came into existence with all its structures.

The researchers calculated that in the process of inflation, the climate was ripe for creating primordial black holes of various masses. And some of them reflect the characteristics predicted for dark matter.

Another way PBHs could have been created during inflation is from "baby universes" – small universes that branched off from the main one.

Hyper Suprime-Cam (HSC) is a gigantic digital camera on the Subaru Telescope

Credit: HSC project / NAOJ

A baby or "daughter" universe would ultimately collapse but the tremendous release of energy would lead to the formation of a black hole, explains the press release from the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) in Japan, one of the institutions participating in this study.

What's also fascinating, some of the bigger baby universes might not have gone so quietly. Above a certain critical size, the theory of gravity developed by Albert Einstein permits that such a universe may be perceived differently by observers. If you were inside it, you'd see an expanding universe, while if you were outside, this baby universe would look like a black hole. A conjecture that leads to wondering – are we potentially on the inside or outside of such a universe ourselves?

If you follow this multiverse logic, it also may be possible that while primordial black holes would appear to us as black holes, their true structural natures could be concealed by their "event horizons" – the boundaries surrounding black holes from which not even light can escape.

It should be noted, while strange or counter-intuitive, this is not the first go-around for these types of ideas. A study earlier in 2020 found that so-called "charged" black holes may include within them endlessly-repeating fractal universes of various sizes, including miniature, that can be stretched and deformed in all directions.

To solidify their theories and to find a primordial black hole, the researchers will continue using the Subaru Telescope, with some promising PBH candidates already emerging.

The international team of particle physicists working on the research came from the University of California, Los Angeles and the Kavli Institute. The group included cosmologists and astronomers Alexander Kusenko, Misao Sasaki, Sunao Sugiyama, Masahiro Takada and Volodymyr Takhistov.

Check out their new paper "Exploring Primordial Black Holes from the Multiverse with Optical Telescopes" in Physical Review Letters.

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

These are the world’s greatest threats in 2021

We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.

Luis Ascui/Getty Images
Politics & Current Affairs

Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.

Keep reading Show less

Columbia study finds new way to extract energy from black holes

A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.

Credit: NASA's Goddard Space Flight Center
Surprising Science
  • In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
  • A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
  • The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
Keep reading Show less
Mind & Brain

A psychiatric diagnosis can be more than an unkind ‘label’

A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.

Scroll down to load more…
Quantcast