Big ideas.
Once a week.
Subscribe to our weekly newsletter.
3D printing of body parts is coming fast – but regulations are not ready
Today, a quickly emerging set of technologies known as bioprinting is poised to push the boundaries further.

In the last few years, the use of 3D printing has exploded in medicine. Engineers and medical professionals now routinely 3D print prosthetic hands and surgical tools. But 3D printing has only just begun to transform the field.
Today, a quickly emerging set of technologies known as bioprinting is poised to push the boundaries further. Bioprinting uses 3D printers and techniques to fabricate the three-dimensional structures of biological materials, from cells to biochemicals, through precise layer-by-layer positioning. The ultimate goal is to replicate functioning tissue and material, such as organs, which can then be transplanted into human beings.
We have been mapping the adoption of 3D printing technologies in the field of health care, and particularly bioprinting, in a collaboration between the law schools of Bournemouth University in the United Kingdom and Saint Louis University in the United States. While the future looks promising from a technical and scientific perspective, it's far from clear how bioprinting and its products will be regulated. Such uncertainty can be problematic for manufacturers and patients alike, and could prevent bioprinting from living up to its promise.
From 3D printing to bioprinting
Bioprinting has its origins in 3D printing. Generally, 3D printing refers to all technologies that use a process of joining materials, usually layer upon layer, to make objects from data described in a digital 3D model. Though the technology initially had limited applications, it is now a widely recognized manufacturing system that is used across a broad range of industrial sectors. Companies are now 3D printing car parts, education tools like frog dissection kits and even 3D-printed houses. Both the United States Air Force and British Airways are developing ways of 3D printing airplane parts.
The NIH in the U.S. has a program to develop bioprinted tissue that's similar to human tissue to speed up drug screening. (Paige Derr and Kristy Derr, National Center for Advancing Translational Sciences)
In medicine, doctors and researchers use 3D printing for several purposes. It can be used to generate accurate replicas of a patient's body part. In reconstructive and plastic surgeries, implants can be specifically customized for patients using "biomodels" made possible by special software tools. Human heart valves, for instance, are now being 3D printed through several different processes although none have been transplanted into people yet. And there have been significant advances in 3D print methods in areas like dentistry over the past few years.
Bioprinting's rapid emergence is built on recent advances in 3D printing techniques to engineer different types of products involving biological components, including human tissue and, more recently, vaccines.
While bioprinting is not entirely a new field because it is derived from general 3D printing principles, it is a novel concept for legal and regulatory purposes. And that is where the field could get tripped up if regulators cannot decide how to approach it.
State of the art in bioprinting
Scientists are still far from accomplishing 3D-printed organs because it's incredibly difficult to connect printed structures to the vascular systems that carry life-sustaining blood and lymph throughout our bodies. But they have been successful in printing nonvascularized tissue like certain types of cartilage. They have also been able to produce ceramic and metal scaffolds that support bone tissue by using different types of bioprintable materials, such as gels and certain nanomaterials. A number of promising animal studies, some involving cardiac tissue, blood vessels and skin, suggest that the field is getting closer to its ultimate goal of transplantable organs.
Researchers explain ongoing work to make 3d-printed tissue that could one day be transplanted into a human body.
We expect that advancements in bioprinting will increase at a steady pace, even with current technological limitations, potentially improving the lives of many patients. In 2019 alone, several research teams reported a number of breakthroughs. Bioengineers at Rice and Washington Universities, for example, used hydrogels to successfully print the first series of complex vascular networks. Scientists at Tel Aviv University managed to produce the first 3D-printed heart. It included “cells, blood vessels, ventricles and chambers" and used cells and biological materials from a human patient. In the United Kingdom, a team from Swansea University developed a bioprinting process to create an artificial bone matrix, using durable, regenerative biomaterial.
'Cloneprinting'
Though the future looks promising from a technical and scientific perspective, current regulations around bioprinting pose some hurdles. From a conceptual point of view, it is hard to determine what bioprinting effectively is.
Consider the case of a 3D-printed heart: Is it best described as an organ or a product? Or should regulators look at it more like a medical device?
Regulators have a number of questions to answer. To begin with, they need to decide whether bioprinting should be regulated under new or existing frameworks, and if the latter, which ones. For instance, should they apply regulations for biologics, a class of complex pharmaceuticals that includes treatments for cancer and rheumatoid arthritis, because biologic materials are involved, as is the case with 3D-printed vaccines? Or should there be a regulatory framework for medical devices better suited to the task of customizing 3D-printed products like splints for newborns suffering from life-threatening medical conditions?
In Europe and the U.S., scholars and commentators have questioned whether bioprinted materials should enjoy patent protection because of the moral issues they raise. An analogy can be drawn from the famed Dolly the sheep over 20 years ago. In this case, it was held by the U.S. Court of Appeals for the Federal Circuit that cloned sheep cannot be patented because they were identical copies of naturally occurring sheep. This is a clear example of the parallels that exist between cloning and bioprinting. Some people speculate in the future there will be 'cloneprinting,' which has the potential for reviving extinct species or solving the organ transplant shortage.
Dolly the sheep's example illustrates the court's reluctance to traverse this path. Therefore, if, at some point in the future, bioprinters or indeed cloneprinters can be used to replicate not simply organs but also human beings using cloning technologies, a patent application of this nature could potentially fail, based on the current law. A study funded by the European Commission, led by Bournemouth University and due for completion in early 2020 aims to provide legal guidance on the various intellectual property and regulatory issues surrounding such issues, among others.
On the other hand, if European regulators classify the product of bioprinting as a medical device, there will be at least some degree of legal clarity, as a regulatory regime for medical devices has long been in place. In the United States, the FDA has issued guidance on 3D-printed medical devices, but not on the specifics of bioprinting. More important, such guidance is not binding and only represents the thinking of a particular agency at a point in time.
Cloudy regulatory outlook
Those are not the only uncertainties that are racking the field. Consider the recent progress surrounding 3D-printed organs, particularly the example of a 3D-printed heart. If a functioning 3D-printed heart becomes available, which body of law should apply beyond the realm of FDA regulations? In the United States, should the National Organ Transplant Act, which was written with human organs in mind, apply? Or do we need to amend the law, or even create a separate set of rules for 3D-printed organs?
We have no doubt that 3D printing in general, and bioprinting specifically, will advance rapidly in the coming years. Policymakers should be paying closer attention to the field to ensure that its progress does not outstrip their capacity to safely and effectively regulate it. If they succeed, it could usher in a new era in medicine that could improve the lives of countless patients.
Dinusha Mendis, Professor of Intellectual Property and Innovation Law and Co-Director of the Jean Monet Centre of Excellence for European Intellectual Property and Information Rights, Bournemouth University and Ana Santos Rutschman, Assistant Professor of Law, Saint Louis University.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
- 10 Ways Technology Will Transform the Human Body in the next ... ›
- 3 ways 3D printing might save your life - Big Think ›
- 3D bioprinting could manufacture new donor organs - Big Think ›
- The fastest drummer in the world is a cyborg - Big Think ›
- Researchers 3D bioprint realistic human heart in new method - Big Think ›
- Researchers 3D bioprint realistic human heart in new method - Big Think ›
- FDA approves modified pigs for human organ transplant - Big Think ›
Scientists find 16 'ultra-black' fish species that absorb 99.9% of light
These alien-like creatures are virtually invisible in the deep sea.
A female Pacific blackdragon
- A team of marine biologists used nets to catch 16 species of deep-sea fish that have evolved the ability to be virtually invisible to prey and predators.
- "Ultra-black" skin seems to be an evolutionary adaptation that helps fish camouflage themselves in the deep sea, which is illuminated by bioluminescent organisms.
- There are likely more, and potentially much darker, ultra-black fish lurking deep in the ocean.
The Pacific blackdragon
Credit: Karen Osborn/Smithsonian
<p>When researchers first saw the deep-sea species, it wasn't immediately obvious that their skin was ultra-black. Then, marine biologist Karen Osborn, a co-author on the new paper, noticed something strange about the photos she took of the fish.</p><p style="margin-left: 20px;">"I had tried to take pictures of deep-sea fish before and got nothing but these really horrible pictures, where you can't see any detail," Osborn told <em><a href="https://www.wired.com/story/meet-the-ultra-black-vantafish/" target="_blank">Wired</a></em>. "How is it that I can shine two strobe lights at them and all that light just disappears?"</p><p>After examining samples of fish skin under the microscope, the researchers discovered that the fish skin contains a layer of organelles called melanosomes, which contain melanin, the same pigment that gives color to human skin and hair. This layer of melanosomes absorbs most of the light that hits them.</p>A crested bigscale
Credit: Karen Osborn/Smithsonian
<p style="margin-left: 20px;">"But what isn't absorbed side-scatters into the layer, and it's absorbed by the neighboring pigments that are all packed right up close to it," Osborn told <em>Wired</em>. "And so what they've done is create this super-efficient, very-little-material system where they can basically build a light trap with just the pigment particles and nothing else."</p><p>The result? Strange and terrifying deep-sea species, like the crested bigscale, fangtooth, and Pacific blackdragon, all of which appear in the deep sea as barely more than faint silhouettes.</p>Pacific viperfish
David Csepp, NMFS/AKFSC/ABL
<p>But interestingly, this unique disappearing trick wasn't passed on to these species by a common ancestor. Rather, they each developed it independently. As such, the different species use their ultra-blackness for different purposes. For example, the threadfin dragonfish only has ultra-black skin during its adolescent years, when it's rather defenseless, as <em>Wired</em> <a href="https://www.wired.com/story/meet-the-ultra-black-vantafish/" target="_blank">notes</a>.</p><p>Other fish—like the <a href="http://onebugaday.blogspot.com/2016/06/a-new-anglerfish-oneirodes-amaokai.html" target="_blank">oneirodes species</a>, which use bioluminescent lures to bait prey—probably evolved ultra-black skin to avoid reflecting the light their own bodies produce. Meanwhile, species like <em>C. acclinidens</em> only have ultra-black skin around their gut, possibly to hide light of bioluminescent fish they've eaten.</p><p>Given that these newly described species are just ones that this team found off the coast of California, there are likely many more, and possibly much darker, ultra-black fish swimming in the deep ocean. </p>'Deep Nostalgia' AI brings old photos to life through animation
Using machine-learning technology, the genealogy company My Heritage enables users to animate static images of their relatives.
- Deep Nostalgia uses machine learning to animate static images.
- The AI can animate images by "looking" at a single facial image, and the animations include movements such as blinking, smiling and head tilting.
- As deepfake technology becomes increasingly sophisticated, some are concerned about how bad actors might abuse the technology to manipulate the pubic.
My Heritage/Deep Nostalgia
<p>But that's not to say the animations are perfect. As with most deep-fake technology, there's still an uncanny air to the images, with some of the facial movements appearing slightly unnatural. What's more, Deep Nostalgia is only able to create deepfakes of one person's face from the neck up, so you couldn't use it to animate group photos, or photos of people doing any sort of physical activity.</p>My Heritage/Deep Nostalgia
<p>But for a free deep-fake service, Deep Nostalgia is pretty impressive, especially considering you can use it to create deepfakes of <em>any </em>face, human or not. </p>When does an idea die? Plato and string theory clash with data
How long should one wait until an idea like string theory, seductive as it may be, is deemed unrealistic?
- How far should we defend an idea in the face of contrarian evidence?
- Who decides when it's time to abandon an idea and deem it wrong?
- Science carries within it its seeds from ancient Greece, including certain prejudices of how reality should or shouldn't be.
Plato used the allegory of the cave to explain that what humans see and experience is not the true reality.
Credit: Gothika via Wikimedia Commons CC 4.0
<p>When scientists and mathematicians use the term <em>Platonic worldview</em>, that's what they mean in general: The unbound capacity of reason to unlock the secrets of creation, one by one. Einstein, for one, was a believer, preaching the fundamental reasonableness of nature; no weird unexplainable stuff, like a god that plays dice—his tongue-in-cheek critique of the belief that the unpredictability of the quantum world was truly fundamental to nature and not just a shortcoming of our current understanding. Despite his strong belief in such underlying order, Einstein recognized the imperfection of human knowledge: "What I see of Nature is a magnificent structure that we can comprehend only very imperfectly, and that must fill a thinking person with a feeling of humility." (Quoted by Dukas and Hoffmann in <em>Albert Einstein, The Human Side: Glimpses from His Archives</em> (1979), 39.)</p> <p>Einstein embodies the tension between these two clashing worldviews, a tension that is still very much with us today: On the one hand, the Platonic ideology that the fundamental stuff of reality is logical and understandable to the human mind, and, on the other, the acknowledgment that our reasoning has limitations, that our tools have limitations and thus that to reach some sort of final or complete understanding of the material world is nothing but an impossible, <a href="https://www.amazon.com/dp/B01K2JTGIA?tag=bigthink00-20&linkCode=ogi&th=1&psc=1" target="_blank" rel="noopener noreferrer">semi-religious dream</a>.</p>Can you still spread coronavirus after getting the vaccine?
The vaccine will shorten the "shedding" time.
