Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Hypoxia researchers win 2019 Nobel Prize in Medicine

Three scientist friends, working separately, share the prestigious prize.

Photo credit: JONATHAN NACKSTRAND / AFP via Getty Images
  • Nobel recognizes breakthrough insights into cell's perception and response to changes in oxygen levels.
  • Too title oxygen is a problem. Also too much.
  • Their research unveiled a genuine "textbook discovery."

The 2019 Nobel Prize in Medicine has just been awarded to three scientists from the U.S. and U.K. working independently on the same problem: How cells sense and adapt to oxygen availability. They've unveiled the series of molecular events that allow cells to assess and respond to changing levels of available oxygen, with implications in the treatment of cancer, heart attacks, strokes, anemia, and other diseases.

According to the Nobel Assembly, these seminal discoveries "revealed one of life's most essential adaptive processes." The Assembly's Randall Johnson says, "Scientists often toss around this phrase 'textbook discovery.' But I'd say this is really essentially a textbook discovery." He envisions the discovery as "something basic biology students will be learning about when they study — at aged 12 or 13 or younger — biology, and learn the fundamental ways cells work."

Three scientists with three questions

Image source: Paramonov Alexander/Shutterstock

The three scientists who received the 5 a.m. call from Stockholm are Gregg Semenza (Johns Hopkins University), Sir Peter Ratcliffe (Oxford University), and William Kaelin, Jr. (Dana-Farber Cancer Institute/Harvard University). The three shared their work informally over the years in an ongoing conversation that moved the whole field of study forward. Each had his own reason for pursuing his research area, and their interests reflect the far-ranging impact of their findings.

Semenza wondered exactly what it was that cancer cells were seeking when they spread to new areas in the body. He suspected it was oxygen.

As a kidney specialist, Ratcliffe was intrigued by the manner in which the kidney regulated the production of a particular hormone, erythropoietin (EPO), which affects the production of red, oxygen-carrying blood cells in response to changes in levels of available oxygen. Others considered this to be a not-very-interesting question, but Ratcliffe was intrigued.

For Kaelin, it was a pursuit of answers behind a rare genetic form of cancer, Von Hippel-Lindau syndrome (VHL disease), known to involve exaggerated production levels of EPO, and an excess of blood vessels. He had a hunch it was something in cells' then-mysterious oxygen-sensing mechanism malfunctioning.

Why this is important

Image source: Daniel Prudek /Shutterstock

Cells need oxygen to live, and Earth's air-breathing organisms have developed ways to ensure their cells get the amount of oxygen they need. At high altitudes, for example, we produce more red blood cells to accommodate the relative scarcity of air and combat the onset of hypoxia. While a lack of oxygen can be deadly, so too can too much — it may be that an excess of oxygen can be exploited by some cancers, among other issues.

Human bodies have developed a couple of ways to monitor and respond to changes in oxygen levels. The carotid body associated with the large vessels on both sides of the neck have unique cells that sense oxygen levels, and, as noted above, the body produces more oxygen-carrying cells to maximize delivery of what O2 there is when there's not enough. Production of these oxygen-carrying cells is triggered by the production of erythropoietin (EPO) — it's this system that the Nobel winners explored.

A technical glimpse into a three-part puzzle

Image source: DragonTiger8/Shutterstock

The research that led to the Nobel-awarded discovery began back in the 1990s when, Semenza started studying the EPO gene to learn how its production was being controlled. He identified a DNA segment near the EPO gene that appeared to be regulating its production in response to hypoxia. Most interestingly, this DNA, also spotted around the same time by Ratcliffe, wasn't only in kidney cells known to produce EPO, but in all cells.

Eventually Semenza discovered a protein complex that binds to the DNA depending on the amount of oxygen available, and named it hypoxia-inducible factor, or HIF. HIF turned out to be a pair of different DNA-binding proteins, HIF-1α and ARNT.

The amount of HIF-1α increases when oxygen levels are low, apparently due to an oxygen-related reduction in the effect of ubiquitin, a peptide that normally would bind with and quickly decay HIF-1α.

As a result of his immersion in Von Hippel-Lindau research, Ratcliffe discovered why a lack of oxygen could dampen ubiquitin's bite: HIF-1α is tagged for destruction by ubiquitin via the VHL gene. (An absence of the VHL gene causes the disease by allowing the presence of too much HIF-1α.)

This implied an unknown interaction between the VHL gene and HIF-1α and Kaelin and Ratcliffe worked it out. They realized that at normal oxygen levels, two hydroxyl groups were added to two locations in HIF-1α. Aided by oxygen-sensitive enzymes, VHL thus binds to HIF-1α and moderates the production of EPO and the number red blood cells. With either too little or too much oxygen, this balance is upset.

In all, this daisy-chained sets of research has given us a new insight about our bodies — specifically, of the series of molecular events that constantly help our cells assess and respond to changing levels of oxygen. "Textbook discovery," indeed.

Live tomorrow! Unfiltered lessons of a female entrepreneur

Join Pulitzer Prize-winning reporter and best-selling author Charles Duhigg as he interviews Victoria Montgomery Brown, co-founder and CEO of Big Think, live at 1pm EDT tomorrow.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Improving Olympic performance with asthma drugs?

A study looks at the performance benefits delivered by asthma drugs when they're taken by athletes who don't have asthma.

Image source: sumroeng chinnapan/Shutterstock
Culture & Religion
  • One on hand, the most common health condition among Olympic athletes is asthma. On the other, asthmatic athletes regularly outperform their non-asthmatic counterparts.
  • A new study assesses the performance-enhancement effects of asthma medication for non-asthmatics.
  • The analysis looks at the effects of both allowed and banned asthma medications.

Keep reading Show less

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less
Mind & Brain

Why are we fascinated by true crime stories?

Several experts have weighed in on our sometimes morbid curiosity and fascination with true crime.

Scroll down to load more…
Quantcast