Scientists Discover The “Master Controller” Neuron of Good and Bad Habits

The discovery of a neuron in the brain that acts as the “master controller” of habits could someday change the way we treat addiction and compulsive behaviors.

Cultured Rat Hippocampal Neuron
Cultured Rat Hippocampal Neuron


Scientists at Duke University have identified a neuron that acts as the “master controller” of habits. The findings, published in the journal eLife, could someday change the ways addiction and compulsive behavior are treated.

The “master controller” of habit appears to be a rare cell called the fast-spiking interneuron (FSI), which shows boosted activity during habit formation and, interestingly, seems to shut down habit behaviors when suppressed by drugs. 

FSIs, which belong to a class of neuron that relays messages between other neurons, are found in a region deep within the brain called the striatum. Here, FSIs make up only 1 percent of cells, but they have long branch-like tendrils that allow them to connect with 95 percent of the other neurons associated with habitual behavior.

“This cell is a relatively rare cell but one that is very heavily connected to the main neurons that relay the outgoing message for this brain region,” said Nicole Calakos, an associate professor of neurology and neurobiology at the Duke University Medical Center, to Duke News. “We find that this cell is a master controller of habitual behavior, and it appears to do this by re-orchestrating the message sent by the outgoing neurons.”

It’s been known that habit formation can effectively rewire the brain, but exactly which neurons cause and control this process has been unclear. The team behind the new study wanted to change that.

“We were trying to put these pieces of the puzzle into a mechanism,” Calakos said.

In 2016, the Duke University researchers published their first insights into habit and its effects on the brain. They found that habit formation in mice resulted in long-lasting changes in the striatum, which has two sets of neural pathways: a “go” pathway that triggers action, and a “stop” pathway that inhibits it.

The results showed habit formation made both of these pathways stronger, and also caused the “go” pathway to fire before the “stop” pathway.


A magnified view of the striatum of a mouse brain, fast-spiking interneuron in purple. Credit: Justin O’Hare, Duke University

Still, they weren't quite sure which neurons were effectively running the show in the striatum. To find out, the researchers, led by graduate student Justin O’Hare, first observed that FSIs become more excitable when a habit is formed. Then they administered a drug to habituated mice that suppresses the firing of FSIs. The results? The “stop” and “go” pathways in the striatum reverted to “pre-habit” patterns, and their habit behaviors vanished.

“Some harmful behaviors like compulsion and addiction in humans might involve corruption of the normally adaptive habit-learning mechanisms.” Calakos said. “Understanding the neurological mechanisms underlying our habits may inspire new ways to treat these conditions.”

“I firmly believe that to develop new therapies to help people, we need to understand how the brain normally works, and then compare it to what the ‘broken’ brain looks like.” 


‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

These are the world’s greatest threats in 2021

We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.

Luis Ascui/Getty Images
Politics & Current Affairs

Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.

Keep reading Show less

Columbia study finds new way to extract energy from black holes

A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.

Credit: NASA's Goddard Space Flight Center
Surprising Science
  • In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
  • A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
  • The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
Keep reading Show less
Mind & Brain

A psychiatric diagnosis can be more than an unkind ‘label’

A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.

Scroll down to load more…
Quantcast