A New Hypothesis Suggests That Parallel Universes Might Interact after All

A new conception of quantum mechanics rests on the idea that parallel universes exist, and that they interact with our own to create weird and wonderful quantum phenomena. 

Quantum mechanics is hard to do. The great physicist Richard Feynman once remarked “It is safe to say that nobody understands quantum mechanics” and that statement was regarded as correct. The problem isn’t in the math, even an undergraduate can use Schrödinger’s equation, it is in what the math means.


We are all familiar with several interpretations of what the math could mean, from cats that are both dead and alive to an infinite multiverse where every possible history does happen. How to prove which of these interpretations is correct is another problem; as parallel universes are postulated to not interact with one another and scientists don’t quite have the stomach to put cats in quantum booby traps. With no ability to experiment, the math is all we know for sure.

But, a radical new interpretation might hold the answer, and in a manner that could be tested.

The idea is called the Many Interacting Worlds hypothesis, the or MIW. The core concept is that a plethora of universes have always existed side by side, and that they subtly influence the ones near them to differ from themselves. The bizarre effects of quantum mechanics that we observe and are confused by, such as quantum tunneling and the double slit experiment, are really caused by the interactions between these universes.

 

 

The hypothesis says the probabilistic nature we ascribe to certain events is really uncertainty caused by our not knowing which universe we are in, and that if we knew where we were physics would again be deterministic. The authors of the study say as little as two existent universes would be enough to assure quantum effects take place. They show they can account for basic quantum phenomena using their ideas.

What makes this model different from the others?

Firstly, it “contains nothing that corresponds to the mysterious quantum wave function,” except when the number of modeled universes is infinite. When the model contains only one universe, it simplifies to a classical, Newtonian system. Quantum physicist and author of the hypothesis Michael Hall called this element “surprising” and said that it means that their hypothesis “incorporates both classical and quantum theory”.  A vital step for any interpretation that wants to make headway.


Another key difference is that the proposed words in this hypothesis interact with one another. Because of this, scientists could devise an experiment to show if the predicted interaction was taking place; supporting or disproving the hypothesis. Since science typically holds falsifiability to be a gold standard, this is a great leap forward for quantum theory.

So, is this model going to be of any use?

At the moment, the model is still speculative and unlikely to become the new standard interpretation anytime soon. The authors of the hypothesis hope that their concept “will be useful in planning experiments to test and exploit quantum phenomena such as entanglement. Our findings include new algorithms for simulating such phenomena and may even suggest new ways to extend standard quantum mechanics.”

Even if the ideas are proven false, or never catch on as a paradigm for interpreting quantum phenomena, the researchers hope to advance our understanding of science anyway. As they say in their press release, “while Richard Feynman may have had a point when he said ‘I think I can safely say that nobody understands quantum mechanics,’ there is still much to be gained by trying to do so”.

 

 

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

Dead – yes, dead – tardigrade found beneath Antarctica

A completely unexpected discovery beneath the ice.

(Goldstein Lab/Wkikpedia/Tigerspaws/Big Think)
Surprising Science
  • Scientists find remains of a tardigrade and crustaceans in a deep, frozen Antarctic lake.
  • The creatures' origin is unknown, and further study is ongoing.
  • Biology speaks up about Antarctica's history.
Keep reading Show less

If you want to spot a narcissist, look at the eyebrows

Bushier eyebrows are associated with higher levels of narcissism, according to new research.

Big Think illustration / Actor Peter Gallagher attends the 24th and final 'A Night at Sardi's' to benefit the Alzheimer's Association at The Beverly Hilton Hotel on March 9, 2016 in Beverly Hills, California. (Photo by Alberto E. Rodriguez/Getty Images)
popular
  • Science has provided an excellent clue for identifying the narcissists among us.
  • Eyebrows are crucial to recognizing identities.
  • The study provides insight into how we process faces and our latent ability to detect toxic people.
Keep reading Show less

Why are women more religious than men? Because men are more willing to take risks.

It's one factor that can help explain the religiosity gap.

Photo credit: Alina Strong on Unsplash
Culture & Religion
  • Sociologists have long observed a gap between the religiosity of men and women.
  • A recent study used data from several national surveys to compare religiosity, risk-taking preferences and demographic information among more than 20,000 American adolescents.
  • The results suggest that risk-taking preferences might partly explain the gender differences in religiosity.
Keep reading Show less