Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

There Are Biophotons in the Brain. Is Something Light-Based Going On?

Neurons in the human brain produce photons, and are apparently capable of being the infrastructure for light-based communication and activity.

Light-emitting brain

Over the last 100 years, scientists have realized, first in rats, that neurons in mammalian brains were capable of producing photons, or "biophotons." The photons appear, though faintly, within the visible spectrum, running from near-infrared through violet, or between 200 and 1,300 nanometers. The question is why?

In biology, of course, “why" is an iffy question that presupposes intent, that is, some conscious designer at work. In fact, many traits just are, due to random mutation, and have simply never been selected out. It's unknown so far if biophotons just are. But scientists have some exciting suspicions, and a recently published paper asks a tantalizing question: Are there optical communication channels in the brain? If the answer is yes, what's being communicated? The very notion opens the conversation to a whole other level of operation in the brain that could even be on a previously undiscovered entangled quantum level.

The team wanted to know whether or not there existed an infrastructure over which light could travel from one place to another in the brain across the distances required, focusing on myelinated axons. Axons are the fibers that carry a neuron's electrical signal outward; myelinated axons are covered in myelin, a fatty substance that electrically insulates the axon.

Biophotons can travel away from the neuron or back up toward the hillock. (WIKIPEDIA)

They modeled such axons, doing computations on how light would behave as the fibers bent, lost or gained thickness in their biophoton-absorbing myelin coating, or how they'd behave when crossing each other. The team concluded that light conduction across myelinated axons is feasible.

The axons could pass between 46% and 96% of the light they receive over a distance of 2 millimeters, the average length of a human brain's axons, the percentage depending on bending, sheath thickness, etc. They also worked out that, though rat brains can pass just one biophoton per neuron a minute, human brains, with many more neurons, could convey more than a billion biophotons per second. All together, the researchers conclude, “This mechanism appears to be sufficient to facilitate transmission of a large number of bits of information, or even allow the creation of a large amount of quantum entanglement." So there's what could act as an entire network for light-based communication in place. But we don't know what, if anything, it's doing. The researchers proposed a set of in vitro and in vivo experiments for others to perform that could confirm their findings.

Meanwhile, did they say “entanglement?" Given the presence here of photons, the possibility has to cross one's mind, since they go hand in hand, as it were, with entanglement. In the paper, the scientists are intrigued in particular with the interactions between photons and nuclear spins — the way nuclei turn causes different chemical effects — and how that affects things like magnetoreception in animals.

Earth's magnetic field (TERRENCE SABAKA ET AL/NASA GSFC)

Given that there's some distance between the biophotons and nuclear spins, the scientists wonder if there's entanglement involved, saying, “for individual quantum communication links to form a larger quantum network with an associated entanglement process involving many distant spins, the nuclear spins interfacing with different axons must interact coherently. This, most likely, requires close enough contact between the interacting spins. The involvement of synaptic junctions between individual axons may provide such a proximity mechanism." And since some people think entanglement could be behind whatever process it is that produces consciousness, well, where is this going to lead?

Just How Much Land Does the Federal Government Own — and Why?

The rough beauty of the American West seems as far as you can get from the polished corridors of power in Washington DC.

Surprising Science

The rough beauty of the American West seems as far as you can get from the polished corridors of power in Washington DC. Until you look at the title to the land. The federal government owns large tracts of the western states: from a low of 29.9% in Montana, already more than the national average, up to a whopping 84.5% in Nevada.

Keep reading Show less

Can VR help us understand layers of oppression?

Researchers are using technology to make visual the complex concepts of racism, as well as its political and social consequences.

Future of Learning
  • Often thought of first as gaming tech, virtual reality has been increasingly used in research as a tool for mimicking real-life scenarios and experiences in a safe and controlled environment.
  • Focusing on issues of oppression and the ripple affect it has throughout America's political, educational, and social systems, Dr. Courtney D. Cogburn of Columbia University School of Social Work and her team developed a VR experience that gives users the opportunity to "walk a mile" in the shoes of a black man as he faces racism at three stages in his life: as a child, during adolescence, and as an adult.
  • Cogburn says that the goal is to show how these "interwoven oppressions" continue to shape the world beyond our individual experiences. "I think the most important and powerful human superpower is critical consciousness," she says. "And that is the ability to think, be aware and think critically about the world and people around you...it's not so much about the interpersonal 'Do I feel bad, do I like you?'—it's more 'Do I see the world as it is? Am I thinking critically about it and engaging it?'"
Keep reading Show less

Russia claims world's first COVID-19 vaccine but skepticism abounds

President Vladimir Putin announces approval of Russia's coronavirus vaccine but scientists warn it may be unsafe.

Russian President Vladimir Putin announced coronavirus vaccine at the Novo-Ogaryovo residence outside Moscow, Russia, Tuesday, Aug. 11, 2020.

Credit: Alexei Nikolsky, Sputnik, Kremlin Pool Photo via AP
Coronavirus
  • Vladimir Putin announced on Tuesday that a COVID-19 vaccine has been approved in Russia.
  • Scientists around the world are worried that the vaccine is unsafe and that Russia fast-tracked the vaccine without performing the necessary phase 3 trials.
  • To date, Russia has had nearly 900,000 registered cases of coronavirus.
  • Keep reading Show less
    Scroll down to load more…
    Quantcast