New study reveals that reincarnation is real — kind of

  • Caenorhabditis elegans nematodes can transmit information about the environment through neurons to future generations.
  • Research from Tel Aviv University pushes back against the "second law of biology," which states that heritable information is segregated from somatic influences.
  • If applicable to humans this research could have important uses in medicine.


A new study at Tel Aviv University, published in the journal Cell on June 6, suggests reincarnation, or a phenomenon much like it, is real after all. Well, for germ cells. Nematodes (worms that contain nearly the same number of genes as humans) transmit information through neurons to future generations.

This is likely the reason many animals are born keenly aware of their environment. Insects must make haste upon breaking through their shell; certain mammals are engaged in a life or death struggle from their very first breath. We've long known animals are born with an internal guiding system helping them navigate environmental tyranny. This study details how this happens, for worms at least.

Professor Oded Rechavi, in the Department of Nuerobiology at Tel Aviv University, explains:

"The mechanism is controlled by small RNA molecules, which regulate gene expression. We found that small RNAs convey information derived from neurons to the progeny and influence a variety of physiological processes, including the food-seeking behavior of the progeny."

Rechavi believes this research pushes back against biological dogma (the "Weissmann Barrier") claiming that heritable information is segregated from somatic influences. The study details the worm's nervous system being genetically encoded with both an internal and external knowledge. Animals are born with a sense of place inherited from their parents.

Rechavi and team achieved this by cutting off certain progeny's smelling abilities, which is necessary for identifying food sources.

"We discovered that synthesis of small RNAs in neurons is needed for the worm to efficiently be attracted to odors associated with essential nutrients — to look for food. The small RNAs produced in the parents' nervous system influenced this behavior, as well as the expression of many germline genes that persisted through at least three generations."

Whether or not the same mechanism works in humans remains to be seen. Unlike nematodes, we're notoriously slow developers. Babies are completely dependent on caretakers for years. In this regard, we're an exception in the animal kingdom. Genetic reincarnation in worms might not be applicable to humans.

Artwork by Rebecca Hardy (Photo by DeAgostini/Getty Images)

Nematode or Roundworm (Nematoda)

Yet, if it is, Rechavi says it could have a very practical use in medicine. As physician and author Siddhartha Mukherjee writes in The Gene, the booming field of genetics is helping us construct "a new epidemiology of self." He continues,

"We are beginning to describe illness, identity, affinity, temperament, preferences — and ultimately, fate and choice — in terms of genes and genomes."

If their evidence holds up in humans, Rechavi believes it could help doctors design better diagnostics and therapies. Identifying diseases earlier in life (maybe even before a child is born) increases their chance of survival, even, as it turns out, across multiple generations. It could, Rechavi concludes, "potentially influence an organism's evolutionary course."

--

Stay in touch with Derek on Twitter and Facebook.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Active ingredient in Roundup found in 95% of studied beers and wines

The controversial herbicide is everywhere, apparently.

(MsMaria/Shutterstock)
Surprising Science
  • U.S. PIRG tested 20 beers and wines, including organics, and found Roundup's active ingredient in almost all of them.
  • A jury on August 2018 awarded a non-Hodgkin's lymphoma victim $289 million in Roundup damages.
  • Bayer/Monsanto says Roundup is totally safe. Others disagree.
Keep reading Show less

Robot pizza delivery coming later this year from Domino's

The pizza giant Domino's partners with a Silicon Valley startup to start delivering pizza by robots.

Nuro
Technology & Innovation
  • Domino's partnered with the Silicon Valley startup Nuro to have robot cars deliver pizza.
  • The trial run will begin in Houston later this year.
  • The robots will be half a regular car and will need to be unlocked by a PIN code.

Would you have to tip robots? You might be answering that question sooner than you think as Domino's is about to start using robots for delivering pizza. Later this year a fleet of self-driving robotic vehicles will be spreading the joy of pizza throughout the Houston area for the famous pizza manufacturer, using delivery cars made by the Silicon Valley startup Nuro.

The startup, founded by Google veterans, raised $940 million in February and has already been delivering groceries for Kroger around Houston. Partnering with the pizza juggernaut Domino's, which delivers close to 3 million pizzas a day, is another logical step for the expanding drone car business.

Kevin Vasconi of Domino's explained in a press release that they see these specially-designed robots as "a valuable partner in our autonomous vehicle journey," adding "The opportunity to bring our customers the choice of an unmanned delivery experience, and our operators an additional delivery solution during a busy store rush, is an important part of our autonomous vehicle testing."

How will they work exactly? Nuro explained in its own press release that this "opportunity to use Nuro's autonomous delivery" will be available for some of the customers who order online. Once they opt in, they'll be able to track the car via an app. When the vehicle gets to them, the customers will use a special PIN code to unlock the pizza compartment.

Nuro and its competitors Udelv and Robomart have been focusing specifically on developing such "last-mile product delivery" machines, reports Arstechnica. Their specially-made R1 vehicle is about half the size of a regular passenger car and doesn't offer any room for a driver. This makes it safer and lighter too, with less potential to cause harm in case of an accident. It also sticks to a fairly low speed of under 25 miles an hour and slams on the breaks at the first sign of trouble.

What also helps such robot cars is "geofencing" technology which confines them to a limited area surrounding the store.

For now, the cars are still tracked around the neighborhoods by human-driven vehicles, with monitors to make sure nothing goes haywire. But these "chase cars" should be phased out eventually, an important milestone in the evolution of your robot pizza drivers.

Check out how Nuro's vehicles work: