Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Why Can’t We Use the Placebo Effect to Heal the Sick?

Studies have shown that the placebo effect can be used to alleviate pain and other symptoms. Yet, how to harness it in an ethical manner has been difficult to discern. 

 

Medical professionals keep a patient's spirits high.

Due to the latest in imaging techniques, genetic research, and other breakthroughs, we know more about the brain than ever before. Still, much remains a mystery. Some believe the brain itself has the power to heal, but we do not know how to harness it. Take the case of Norman Cousins. In the 1970’s the editor-in-chief of the Saturday Review came down with a serious and rare illness. It was progressive, terminal, and had no cure. Instead of giving up, Cousins, who knew about the impact of negative emotions on disease, attempted to tap into the power of positive ones. Their effect on pathology was unknown at the time. He got a movie projector and every Marx Brothers and Candid Camera reel could find. Cousins holed up in a hotel and slowly over time laughed himself well again.


One important aspect of this miracle was that it was so well documented. The case began an entirely new field known as psychoneuroimmunology. This is how thoughts and feelings change our brain chemistry, which in turn effects how the body confronts disease. Today, there are about a half dozen well known departments in places like Harvard, UCLA, The University of Ohio, and the University of Miami, and more. These researchers say that our thoughts and emotions affect us, either positively or negatively, right down to the cellular level.

The idea is not new. Healers throughout the ages have tried to find ways to goose the body into healing itself. This is the theory behind homeopathic medicine, considered unfounded by the medical establishment. But modern medicine wouldn’t operate without the vital concept at its root, what we call the placebo effect. The gold standard for medical research is the placebo-controlled, double-blind study. Here one group of participants is given a drug or undergoes a procedure, while the other receives a fake version. Researchers do not know which is which until the results are examined. It is expected that a certain number of those in the placebo group experience symptom relief, even though don’t receive actual treatment.

 

Norman Cousins, the man who “laughed himself well.”

So how effective are placebos? Several studies have shown symptom relief in treating pain, the menopause, irritable bowel syndrome, asthma, sleep disorders, and depression. Researchers theorize that the belief or expectation surrounding a certain drug or procedure initiates some kind of biochemical reaction in the brain which fulfills the expectation. Those with stronger expectations are more likely to experience the placebo effect. Studies have shown for instance that those given a placebo described as a new painkiller saw levels of the body’s own natural pain relievers, called endorphins, shoot up. Other studies have recorded changes in brain activity in response to taking a placebo.

The placebo effect can go the other way too. The patient can feel “side effects” such as headaches, nausea, constipation, and others, even when taking a sugar pill. This is called the “nocebo effect.” Taken together, these two phenomena are known as expectation effects. So can we use the placebo effect to heal the body? After all, what’s better than all natural healing with no side effects?

Unfortunately, over the last six decades, the placebo effect has been something of a mystery, and a source of consternation for medical science. Today, we are just starting to see a strong interest in exploring the mind-body connection. An overarching theory on how the placebo effect works is still forthcoming. Recent studies support the hypothesis that the effect pertains mainly to symptoms, not the cause. There are some studies which look into using the placebo effect for symptom relief. Such a breakthrough could be huge, especially in light of the chronic pain epidemic currently gripping the U.S., the opioid addiction epidemic resulting from it.          

 

Placebo labeled for a trial. Could this help alleviate pain while avoiding addiction or side effects?

 One Harvard study discovered that 44% of patients with IBD found relief by undergoing sham acupuncture. Coupled with empathetic interaction with the practitioner, symptom relief shot up to 66%. What’s more, many doctors are already using the placebo effect to help patients

A 2008 study found that around half of doctors in the U.S. prescribed placebos such as sedatives, vitamins, or over-the-counter pain relievers, to help increase patient expectations of recuperation. A 2010 study found that 40% of all doctors gave an antibiotic as a placebo, though hopefully this is changing in light of the current “superbug” threat. Meanwhile, 11% had given injections or prescribed pills that served no medical purpose. Though widespread, ethically speaking, the practice is controversial. Doctor shouldn’t lie to patients. But how can the placebo effect be used without deception?

Doctors today already use the placebo effect in some ethical ways. For instance, a positive doctor-patient relationship can help set up a positive expectation. How diagnoses are delivered and discussed, what cues and expectations the doctor gives, and the employment of certain conditioning techniques can all make a difference in how the patient responds to therapy. In terms of conditioning, empathy, positive touch, and a certain level of confidence have been shown to catalyze healing. 

 

Physicians have long known the impact positive emotions have on healing. But how to use it has escaped them.

Ted J. Kaptchuk is an expert in the placebo effect. He is an associate professor of medicine at Harvard Medical School, and the director of the program in placebo studies and therapeutic encounters at Beth Israel Deaconess Medical Center. Kaptchuk led a groundbreaking 2012 study which looked at the placebo effect on the genetic level. He discovered a certain genetic mutation associated with the neurotransmitter dopamine. When released, this brain chemical causes feelings of wellbeing, reward, and euphoria. The patients carrying this mutation were found to be more likely to respond to the placebo effect. This could help scientists pinpoint who would most likely benefit from placebo-related treatment. It might also aid researchers in parsing out which symptom relief aspects of a certain drug are psychological, and which are biochemically based.

Kaptchuk says we shouldn’t expect the placebo effect to be able to say cure a tumor. Apparently, the mystery behind Norman Cousins is still intact. But in a breakthrough letter to The New England Journal of Medicine, he did write that we can and should use the placebo effect along with traditional medicine to influence patients and help them manage their symptoms in a safe, effective manner.

To learn more about the placebo effect click here: 

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast