IBM Is Developing a Super Molecule to Destroy All Viruses

Researchers found what all viruses have in common and created a therapy that should work on any kind, and will outsmart viral mutation.

If you lined up everything alive on the planet today and counted them one-by-one, you’d find that viruses are the most common creatures by far. Pervasive, pathogenic varieties are notoriously hard to treat, as the recent Ebola outbreak and the Zika pandemic attest. Why is that? Well first off, they are incredibly small, a hundred times smaller than your average human cell. Though they cannot take the immune system head on, they can infiltrate your body, hijack cells and use them to replicate.


Once inside, a virus splices its own DNA into that of the host cell. It takes over and uses the cell’s own machinery to replicate itself. Those viruses move on to other hosts, and in this way a virus infects the body. Today, we have antiretroviral drug therapy (ART) such as is given to HIV patients, which inhibits viral replication. A person can live normally, without the virus taking over. But ART doesn’t clear it from the body. To do that, medications would have to target host cells while leaving healthy ones alone, a feat medical science has yet to accomplish.

Another issue is that viruses mutate, meaning what may work with one variety may not with another. To understand viruses better, researchers at IBM’s Institute of Bioengineering and Nanotechnology (IBN) in Singapore, sought to find what all viruses have in common. Now, they believe they’ve fashioned a molecule that could not only treat any virus successfully, but also create a viable vaccine.

Instead of targeting them on the genetic level, which differs from one strain to the next, investigators looked at certain proteins common to any virus, known as glycoproteins. These are located on the outside of the body and allow a virus access into cells in order to hijack them. Understanding this, researchers moved to formulate a macromolecule, which is basically a large molecule made up of many smaller ones.

 

Macromolecules. Image by Cjp24 (Own work) CC BY-SA 3.0, via Wikimedia Commons

Using an electrostatic charge, the macromolecule is able to draw a virus in and bond to it, making it unable to enter a host cell. After that, it alters the pathogen’s pH level, turning it acidic, and so far less likely to replicate. What’s more, the macromolecule also has a way of protecting the immune system. It disperses a sugar called mannose which bonds to immune cells, inhibiting the virus’s ability to enter them.

So far Ebola and dengue have been tested, and the results, published in the journal Macromolecules, are encouraging. What’s more, a computer model finds the technique effective against Ebola, the flu, chikungunya, dengue fever, and herpes simplex 1, among other viruses.

This research has reached a mere proof-of-concept level. Far more studies will be required to confirm its efficacy and safety in humans. If successful, it might become a medication, a disinfectant wipe, or spray cleaner, even a hand sanitizer that can ward off viral infection. Adding it to a room containing Ebola could quickly clear it of the deadly virus. Even though there is a long road ahead, scientists are encouraged by these findings. So much so that the Watson supercomputer will be employed to help develop this exciting breakthrough.

To learn about another possible method, click here: 

How getting in sync with your partner can lead to increased intimacy and sexual desire

Researchers discover a link between nonverbal synchronization and relationship success.

Pixabay
Sex & Relationships
  • Scientists say coordinating movements leads to increased intimacy and sexual desire in a couple.
  • The improved rapport and empathy was also observed in people who didn't know each other.
  • Non-verbal clues are very important in the development stages of a relationship.
Keep reading Show less

How humans evolved to live in the cold

Humans evolved to live in the cold through a number of environmental and genetic factors.

Image source: Wikimedia Commons
Surprising Science
  • According to some relatively new research, many of our early human cousins preceded Homo sapien migrations north by hundreds of thousands or even millions of years.
  • Cross-breeding with other ancient hominids gave some subsets of human population the genes to contend and thrive in colder and harsher climates.
  • Behavioral and dietary changes also helped humans adapt to cold climates.
Keep reading Show less

Stan Lee, Marvel co-creator, is dead at 95

The comics titan worked for more than half a century to revolutionize and add nuance to the comics industry, and he built a vast community of fans along the way.

(Photo: GABRIEL BOUYS/AFP/Getty Images)
Culture & Religion
  • Lee died shortly after being rushed to an L.A. hospital. He had been struggling with multiple illnesses over the past year, reports indicate.
  • Since the 1950s, Lee has been one of the most influential figures in comics, helping to popularize heroes that expressed a level of nuance and self-doubt previously unseen in the industry.
  • Lee, who's later years were marked by some financial and legal tumult, is survived by his daughter, Joan Celia "J.C." Lee.
Keep reading Show less