The World’s 1st Molecular Robot Has Just Been Created by UK Scientists

One researcher called it “the ultimate in the miniaturization of machinery.”

 

We marvel at movies like Ant Man, Inner Space, and Fantastic Voyage, where someone or something can shrink down to the nanoscale and navigate a microscopic world. Although shrinking something down with some type of laser or energy field is all but impossible today, we are beginning to exact more and more control over tinier and tinier environments.


The new and growing branch of nanotechnology promises much. In the near future, experts predict that nanosensors will be used inside our bodies to monitor our health and alert us to disease or even an oncoming health crisis. Nanosensors could also monitor the environment. Another exciting application is creating the next generation of materials with novel properties.

These can include gaining electrical properties in fabric-based items. Consider clothing that can conduct electricity; your outfit could have electronics built into it, or even a wireless charger for your phone. Nanotech can also help create the next generation of bullet-proof and explosive-resistant materials. We will be able to imbue materials with other properties as well such as water-resistance, anti-corrosive properties, anti-fogging, anti-abrasion, and more.

Imagine self-healing materials. Tear your jacket? No problem. It just grows back. In the realm of energy, nanotech could be used to improve solar cells and develop ultra-capacitors for energy storage, which could help us embrace green energy and jettison fossil fuels. In total, scientists believe nanotech can help us to develop multi-component systems that are smart, autonomous, and adapt to the environment or changing circumstances.

Carbon nanotubes strung together can make some of the strongest material on Earth. Wikipedia Commons.

But what about actual machines? The field of nanorobotics is young but growing rapidly. One research team is working on self-aware nanobots that can deliver drugs inside the body, right where they’re needed. Another group at Rice University built a nanocar. A collaboration of several US universities recently announced the creation of a photodynamic nanodrill. When it encounters light or a laser, it spins and can drill right down into a cancer cell, killing it.

Now, a team at the University of Manchester in the UK has reached another milestone. It's developed a robot so small it operates on the molecular level. This is the world’s first molecular robot, and it has an arm which can manipulate individual molecules or move them in clusters.

The thing is a millionth of a millimeter in size. To give you an idea of the scale we’re talking about, one quintillion (a billion billion) of them piled together would be about equal to a few grains of salt. Each machine is comprised of 150 atoms. That includes carbon, hydrogen, oxygen, and nitrogen atoms. Though small, these machines could offer us incredible capabilities, such as to work in tiny, molecular factories, in order to manufacture the next generation of materials and products.

This 2016 Nobel Prize-winning Nanocar was created at Rice University. Edumol, Molecular Visualizations. Wikimedia Commons.

Certain biological processes move atoms individually or in clusters all the time to serve an organism’s needs. Previous to this study, some experts argued that doing so artificially was all but impossible. Professor David Leigh of University of Manchester's School of Chemistry led the study. He called this, “the ultimate in the miniaturization of machinery.” The chemist explained how he and his team approached the project.

Leigh said:

Our robot is literally a molecular robot constructed of atoms just like you can build a very simple robot out of Lego bricks. The robot then responds to a series of simple commands that are programmed with chemical inputs by a scientist. It is similar to the way robots are used on a car assembly line. Those robots pick up a panel and position it so that it can be riveted in the correct way to build the bodywork of a car. So, just like the robot in the factory, our molecular version can be programmed to position and rivet components in different ways to build different products, just on a much smaller scale, at a molecular level.

Detailed visualization of the molecular robot. Credit: Nature.

While most nanobots are extremely complex to build, this one operates on simple, well understood chemical processes. Prof. Leigh said, “This is the science of how atoms and molecules react with each other and how larger molecules are constructed from smaller ones.” He added, “It is the same sort of process scientists use to make medicines and plastics from simple chemical building blocks. Then, once the nano-robots have been constructed, they are operated by scientists by adding chemical inputs which tell the robots what to do and when, just like a computer program.”

The cost of materials, particularly to make electronics, is going through the roof. The beauty in using such robots instead of life-sized equipment is that everything operates on such a small scale, once the price of the actual tech comes down, it’ll make the ability to create materials more cost-effective. It could also improve the quality of products. It may even help increase the rate of miniaturization. We’ll be able to make smaller, more agile devices more easily. Such a robot could also help improve the process of discovering new drugs as well.

“Our aim is to design and make the smallest machines possible,” Prof. Leigh said. “This is just the start but we anticipate that within 10 to 20 years molecular robots will begin to be used to build molecules and materials on assembly lines in molecular factories.”

The results of this study were published in the journal Nature.

To get an interesting look at the “nanobots” that already operate inside your body, click here: 

--

The unusual way magic mushrooms evolved

It's got more to do with sending insects on terrifying trips than it does making Phish sound good.

Surprising Science
  • Fungi species that produce psilocybin—the main hallucinogenic ingredient in "magic" mushrooms—aren't closely related to one another.
  • Researchers have discovered that the way these fungi independently gained the ability to produce psilocybin is because of horizontal gene transfer.
  • Based on how uncommon horizontal gene transfer is in mushroom-producing fungi and the types of fungi that produce psilocybin, it seems likely that the hallucinogenic chemical is meant to be scrambled the brains of insects competing with fungi for food.
Keep reading Show less

White House slams socialism in new report

The 72-page report makes a case against modern policy proposals like "Medicare for All" and free college tuition.

(Photo by Win McNamee/Getty Images)
Politics & Current Affairs
  • The report comes from the White House Council of Economic Advisers (CEA), which is run by professional economists.
  • It attempts to make direct connections between modern-day progressives and past socialist figures like Stalin and Mao.
  • The report comes in the wake of other explicitly anti-socialist sentiments expressed by the Trump administration.
Keep reading Show less

Take the Big Think survey for a chance to win :)

Calling all big thinkers!

  • Tell us a little bit about where you find Big Think's videos, articles, and podcasts.
  • Be entered for a chance to win 1 of 3 Amazon gift cards each worth $100.
  • All survey information is anonymous and will be used only for this survey.
Keep reading Show less

Why the college dropout myth can hurt your prospects

The road from college dropout to billionaire is paved with an overwhelming amount of failures along the way.

(Photo by Justin Sullivan/Getty Images)
Personal Growth
  • Sensational news stories and anecdotes about people like Steve Jobs, Mark Zuckerberg, and Bill Gates would have you believe that quitting school is the answer.
  • Many of these dropouts were already attending elite universities and either had incredible family connections or other professional backing.
  • College dropouts make up a slim minority of the world's richest and most powerful.
Keep reading Show less

Sandra Day O’Connor, first woman on U.S. Supreme Court, has dementia

Her husband died in 2009 of the disease.

Politics & Current Affairs
  • Justice Sandra Day O'Connor was the first woman to serve on the U.S. Supreme Court.
  • She was a deciding vote on a number of cases that came before the court.
  • Watch her interview from 2015 about her upbringing and desire to see more women in all parts of government.
Keep reading Show less

Helping others improves your mood in two different ways

Want to feel better? Try helping others, but your motivation matters.

(Photo by SAEED KHAN/AFP/Getty Images)
Mind & Brain
  • A meta-analysis of studies on altruism reveals that giving of any kind makes us feel good, but that our brain knows if we are being altruistic or are looking for a reward.
  • This is the first study to separate findings on the brain's response to giving based on motivation.
  • This has implications for how to best reward those who help you, as misjudging their motivations may have negative effects.
Keep reading Show less

For girls, video games are a gateway to STEM degrees

Turns out those violent video games might be a blessing in disguise.

pixabay.com
Culture & Religion
  • Looking at data in the U.K. suggests that the more girls play video games, the greater the chances they'll pursue a STEM degree, regardless of what kind of game they play.
  • Currently, there is a dearth of women taking up STEM degrees.
  • Although it isn't clear whether there is a causal relationship here, encouraging girls to play more video games may also encourage them to study STEM subjects.
Keep reading Show less

100% of people in pilot study had microplastic in their stools

The study was small: 8 people from 8 different countries. But the findings have alarmed scientists.

(Jessica Donohue/Sea Education Association)
Surprising Science
  • All subjects selected for a pilot program had microplastics in their stools.
  • The types of microplastics found implicate both food and non-food sources.
  • Boutique water may be healthier, but its bottles not so much.
Keep reading Show less