Sweating may be why we became the dominant species on Earth

While today profuse sweating is a social embarrassment, in the past it gave us an evolutionary advantage.

Persistence truly does pay off, even if you have to endure the perspiration that comes with it. This is true right down to the biological and evolutionary level, and is in fact how we got here, as the apex predator of the planet. Millions of years ago, digestion consumed most of the calories we ate. These days, our brain takes 20 times more energy than any other organ in the body. So for our brain to develop, we needed a higher density food. Meat—obtained from hunting and killing other animals—fit the bill.


One theory of human evolution states that our ancestors began eating meat about 2 million years ago, which rapidly expanded the development of their brains. Since meat packed a lot of calories and fat, a meat-based diet allowed the brain to grow larger. But how did early humans get that meat? 

One way was eating carcasses, just like pack animals of today still do. The human tapeworm evolved from the kind that infects dogs and hyenas, which means that at some point, we must’ve fed on the same carcasses as them, and came into contact with their saliva. But this wasn’t the only way we obtained meat. 

Ancient hominids must’ve fed on carcasses much like wild dogs and hyenas, before moving on to hunting. Wild African Dogs consuming a blue wildebeest. Credit: by Masteraah, Madikwe Game Reserve, South Africa.

Early humans must’ve taken part in hunting too. Yet, hominins didn’t begin using stones and sticks for hunting until about 200,000 years ago. So between 2.3 million and 200,000 years ago, how did early humans hunt? According to journalist and writer Christopher McDougall, author of the book Born to Run, we ran game animals to death in order to feast upon them.

The ability to run long distances and sweat—so as not to overheat, allowed our ancestors to wear out other animals. Sweating was the key factor. Consider a gazelle running over long distances and being chased by our progenitors. The fact that they can sweat and the gazelle can’t means they can last far longer in the heat of the African Savannah.

Game animals like the gazelle over time become overheated and have to stop to catch their breath, allowing early hunters to make short work of them, a strategy we call today persistence hunting. After about five miles or so, a gazelle needs to stop, rest, and breathe, or risk damaging itself, even dying. Such an animal can only fully extend its diaphragm when not running, while walking upright freed our ancestors from such an issue.

Human sweat is actually a very efficient cooling system, arguably the most effective in the animal kingdom.

Sweating may also act as a defense mechanism. Credit: Getty Images.

Research shows that several traits simultaneously evolved around the same time, about 1.89 million years ago. These were walking upright, hairless skin, sweating, and the ability to run great distances. One reason for all of these rapid changes might have been climate change. The Earth warmed over this same period, shifting the habitat from forest to open grassland, and allowing our ancestors to walk upright and even run in open space. It may have also forced them to hunt animals for food.

Sweating, in addition to being a highly advanced cooling system, may have also acted as a defense mechanism. Anyone who’s ever played shirtless tackle football in the summertime knows how hard it is to catch someone who’s slick and sweaty. So the next time you’re sweating bullets in some social situation, take a moment to calmly reflect on the fact that despite the awkwardness of your perspiration, this biological function is the main reason why you’re able to suffer such indignities in the first place.

To learn more about the science behind sweating, watch this:

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Is this why time speeds up as we age?

We take fewer mental pictures per second.

(MPH Photos/giphy/yShutterstock/Big Think)
Mind & Brain
  • Recent memories run in our brains like sped-up old movies.
  • In childhood, we capture images in our memory much more quickly.
  • The complexities of grownup neural pathways are no match for the direct routes of young brains.
Keep reading Show less

Scientists study tattooed corpses, find pigment in lymph nodes

It turns out, that tattoo ink can travel throughout your body and settle in lymph nodes.

17th August 1973: An American tattoo artist working on a client's shoulder. (Photo by F. Roy Kemp/BIPs/Getty Images)
popular

In the slightly macabre experiment to find out where tattoo ink travels to in the body, French and German researchers recently used synchrotron X-ray fluorescence in four "inked" human cadavers — as well as one without. The results of their 2017 study? Some of the tattoo ink apparently settled in lymph nodes.


Image from the study.

As the authors explain in the study — they hail from Ludwig Maximilian University of Munich, the European Synchrotron Radiation Facility, and the German Federal Institute for Risk Assessment — it would have been unethical to test this on live animals since those creatures would not be able to give permission to be tattooed.

Because of the prevalence of tattoos these days, the researchers wanted to find out if the ink could be harmful in some way.

"The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body," they write.

It works like this: Since lymph nodes filter lymph, which is the fluid that carries white blood cells throughout the body in an effort to fight infections that are encountered, that is where some of the ink particles collect.

Image by authors of the study.

Titanium dioxide appears to be the thing that travels. It's a white tattoo ink pigment that's mixed with other colors all the time to control shades.

The study's authors will keep working on this in the meantime.

“In future experiments we will also look into the pigment and heavy metal burden of other, more distant internal organs and tissues in order to track any possible bio-distribution of tattoo ink ingredients throughout the body. The outcome of these investigations not only will be helpful in the assessment of the health risks associated with tattooing but also in the judgment of other exposures such as, e.g., the entrance of TiO2 nanoparticles present in cosmetics at the site of damaged skin."

Why are so many objects in space shaped like discs?

It's one of the most consistent patterns in the unviverse. What causes it?

Videos
  • Spinning discs are everywhere – just look at our solar system, the rings of Saturn, and all the spiral galaxies in the universe.
  • Spinning discs are the result of two things: The force of gravity and a phenomenon in physics called the conservation of angular momentum.
  • Gravity brings matter together; the closer the matter gets, the more it accelerates – much like an ice skater who spins faster and faster the closer their arms get to their body. Then, this spinning cloud collapses due to up and down and diagonal collisions that cancel each other out until the only motion they have in common is the spin – and voila: A flat disc.