Scientists Create Molecular Nanodrills That Destroy Cancer Cells

This could end the days of suffering through cancer treatment. 

 

Anyone who has gone through cancer treatment or known someone who has, has seen how detrimental the side effects can be. My mother happens to be going through chemotherapy right now for breast cancer. Although it was an aggressive variety, they caught it early. It was surgically removed and she’s going through chemo only to avoid recurrence. Though I’m thankful for that, the chemo still makes her dreadfully nauseous and weak.


There are drugs to offset its effects, but unfortunately she, like many others, can’t take them. The side effects were so severe that now, she’s getting half the dose originally prescribed. If they stuck with the full dose, she might not survive, the doctor said. My mom is halfway through and after four more treatments, she’ll have radiation to look forward to. Fortunately, her doctors have given her a 90% chance it won’t come back. Others are not so lucky.

The problem is that treatments like chemo and radiation attack healthy and malignant tissue indiscriminately. Because of this, researchers have been seeking out ways to target cancer cells while leaving healthy ones alone. Photodynamic therapy is one approach. Here, an inert drug is usually inserted inside a tumor then activated by light or a laser, destroying the cancer while minimizing collateral damage. Another method just starting to be explored is employing nanotechnology.

Nanocar designed by Rice University. Edumol Molecular Visualizations. Wikimedia Commons.

Now, a collaborative effort among researchers at Rice, Durham, and North Carolina State Universities is getting a lot of attention. Their novel method could eliminate the suffering cancer patients go through today. They’ve developed molecular machines which can drill into and destroy cancer cells, leaving health ones untouched. The results were published in the journal Nature. These drills are miniscule. 50,000 of them end-to-end would equal the width of a human hair. They’re also photodynamic.

The way they work is, once in place, the nanomachines are activated via ultraviolet light. They drill down into a cancer cell, killing it. It was only last year that Bernard Feringa won the Nobel Prize for creating the world’s first electric drill on a nanoscale. These researchers built theirs off of that design. Feringa’s was a thousand times smaller than the diameter of a hair, which although still impressive, seems huge by comparison.  

On the left, the nanodrill sits atop a cell membrane. On the right, it’s been activated. Rice University.

These latest nanomachines are each a single rotor which completes 2-3 million rotations per second. Previous prototypes spun slower, but they had a hard time overcoming Brownian motion. This is the forceful erratic movement of microscopic particles within fluid, due to a constant bombardment on many sides by surrounding particles.

Besides its powerful drilling capability, each nanomachine carries a certain peptide with it to ensure the cancer’s demise. These nanodrills were tested on prostate cancer cells. It took between one to three minutes for the drill to break through each cell’s membrane and demolish it.

See them in action here:

Dr. Robert Pal led the study. He hails from Durham University in the UK. “Once developed,” he said, “this approach could provide a potential step change in non-invasive cancer treatment and greatly improve survival rates and patient welfare globally.” Not only would it be used to treat a wide variety of cancers, it could end the days of suffering through side effects.

So far, tests on human and animal cells have been successful. But years of further research lie ahead, before these nanodrills are introduced into the clinical sphere. Next will be tests on microbes and small fish, followed by mice and rats. If all goes well, human trials will follow. Researchers say that not only are these nanomachines useful for killing cancer, in the future, such machines may also engage in cell repair as well.

Nanotech, when it really comes of age, is likely to disrupt not only medicine but the energy sector and others as well. Could nanotech lead to a kind of utopia, free of pollution, disease, and even want?

See what one theoretical physicist thinks here: 

'Upstreamism': Your zip code affects your health as much as genetics

Upstreamism advocate Rishi Manchanda calls us to understand health not as a "personal responsibility" but a "common good."

Sponsored by Northwell Health
  • Upstreamism tasks health care professionals to combat unhealthy social and cultural influences that exist outside — or upstream — of medical facilities.
  • Patients from low-income neighborhoods are most at risk of negative health impacts.
  • Thankfully, health care professionals are not alone. Upstreamism is increasingly part of our cultural consciousness.
Keep reading Show less

Afghanistan is the most depressed country on earth

No, depression is not just a type of 'affluenza' – poor people in conflict zones are more likely candidates

Image: Our World in Data / CC BY
Strange Maps
  • Often seen as typical of rich societies, depression is actually more prevalent in poor, conflict-ridden countries
  • More than one in five Afghans is clinically depressed – a sad world record
  • But are North Koreans really the world's 'fourth least depressed' people?
Keep reading Show less

Banned books: 10 of the most-challenged books in America

America isn't immune to attempts to remove books from libraries and schools, here are ten frequent targets and why you ought to go check them out.

Nazis burn books on a huge bonfire of 'anti-German' literature in the Opernplatz, Berlin. (Photo by Keystone/Getty Images)
Culture & Religion
  • Even in America, books are frequently challenged and removed from schools and public libraries.
  • Every year, the American Library Association puts on Banned Books Week to draw attention to this fact.
  • Some of the books they include on their list of most frequently challenged are some of the greatest, most beloved, and entertaining books there are.
Keep reading Show less

Is there an optimal time of day to exercise?

Two new studies say yes. Unfortunately, each claims a different time.

Bronx, N.Y.: NYPD officer Julissa Camacho works out at the 44th precinct gym in the Bronx, New York on April 3, 2019. (Photo by Alejandra Villa Loarca/Newsday via Getty Images)
Surprising Science
  • Research at the Weizmann Institute of Sciences declares evening to be the best time for an exercise session.
  • Not so fast, says a new study at UC Irvine, which replies that late morning is the optimal workout time.
  • Both studies involved mice on treadmills and measured different markers to produce their results.
Keep reading Show less