Scientists Believe It’s Raining Diamonds on These Two Planets

This research may help us develop diamonds for products and better understand nuclear fusion. 


Planet 20,000 light-years from the center of the Milky Way.
Planet OGLE-2005-BLG-390Lb discovered in 2006. Getty Images.

“Diamond Rain,” might sound like a newly discovered Prince track. In actuality, it’s a phenomenon scientists believe is occurring on at least two of our solar system’s planets. Neptune and Uranus have hydrocarbon-filled atmospheres, which suggest this weird phenomenon. These are dangerous, greenhouse gases. Sure, it seems more like one of Scrooge McDuck’s daydreams than scientific reality. Even so, a study published in Nature Astronomy, proves it's possible.

To be fair, astrophysicists have been suggesting that diamond rain could be occurring on these and perhaps other planets for over the past three decades or so. But no one’s developed an experiment where every aspect of the phenomenon was measured and recorded, until now. Hydrocarbons such as methane are abundant in the atmospheres of gas giants. It’s in fact this particular greenhouse gas that gives Neptune its distinctive hue.

These far off planets have many layers with different temperatures and pressures occurring at each. Diamond rain is thought to occur 5,000 mi. (8,000 km) below each planet’s surface, in what’s called the intermediate zone. Carbon from the center of these planets rises up into the atmosphere.

There’s extremely high pressure in the intermediate zone, which crushes the carbon and the hydrogen found there, together, creating hydrocarbon gas and releasing a diamond, which floats gently down to the slushy surface below. The diamonds eventually sink into the planet, coming to rest at its solid core, forming a  layer of diamond around it, though some speculate there could be molten diamond seas down there, with floating icebergs made of the gemstone within them.

Much larger diamonds may even form there, some speculate, perhaps weighing hundreds or even thousands of pounds. Gathering diamonds from such a planet is impossible with current tech, however. No spacecraft could survive the extremely high pressure.  

The interiors of icy giant planets like Neptune. Greg Stewart/SLAC National Accelerator Laboratory.

Researchers at The Linac Coherent Light Source (SCLS) conducted the study. This is part of the SLAC National Accelerator Laboratory in Menlo Park, Calif. The lab is owned by the US Department of Energy (DOE), but it’s operated by Stanford University. The LCLS is an x-ray camera with an exceptionally bright flash that can take photos of molecules and atoms. Stringing images together creates videos of “chemicals processes as they happen.”

Researchers used the LCLS’s x-ray pulses to measure the phenomenon as it occurred. In this way, they could measure and record the chemical reactions that took place, including the formation of the diamond structures. They recorded it in real time using a technique called femtosecond X-ray diffraction.

X-ray blasts from the LCLS only last 50 femtoseconds. This is one quadrillionth of a second, or one millionth of a nanosecond. Of course, a nanosecond is a billionth of a second. So the x-ray pulses lasted 50 millionths of a billionth of a second. The speed was necessary to capture the reaction taking place.

Scientists took polystyrene—a plastic compound that simulates one made from methane. Using SLAC’s X-ray free-electron laser, researchers made twin shock waves in the plastic, creating a high pressure environment analogous to the inner regions of Neptune or Uranus. The laser first caused one small shock wave within the plastic.

This was far slower than a second one, which grew larger than the first and overtook it. When that occurred, almost all of the plastic material transformed into diamonds, each just a few nanometers (billionths of a meter) in width. 

The Matter in Extreme Conditions instrument at SLAC allows scientists to investigate the extremely hot, dense matter at the centers of stars and giant planets. SLAC National Accelerator Laboratory.

Previous studies just assumed the diamonds formed. This was the first to actually observe their creation. These nanodiamonds sprung to life at 8,540 °F (4,725 °C), at an atmospheric pressure 1.48 million times greater than Earth’s at sea level. These aren’t perfectly cut diamonds but tiny ovals riddled with impurities, just a few atoms thick.

The results may help us better understand, model, and categorize planets. Dominik Kraus was the lead author. He’s an experimental laser physicist from the Helmholtz-Zentrum Dresden-Rossendorf research laboratory in Germany. “We can’t go inside the planets and look at them,” he said, “so these laboratory experiments complement satellite and telescope observations.”

The process used to make the nanodiamonds might also have commercial uses, Kraus said. They could be used in lasers, electronics, explosives, and scientific and medical equipment. Moreover, studies that test matter compression can help scientists better understand the processes behind a nuclear fusion reaction.

With that knowledge, we could develop fusion reactors which provide almost unlimited energy with zero carbon footprint. But that’s in decades to come, perhaps at its earliest in 2030

To hear about diamond rain in other places in the solar system, click here: 

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Designer uses AI to bring 54 Roman emperors to life

It's hard to stop looking back and forth between these faces and the busts they came from.

Meet Emperors Augustus, left, and Maximinus Thrax, right

Credit: Daniel Voshart
Technology & Innovation
  • A quarantine project gone wild produces the possibly realistic faces of ancient Roman rulers.
  • A designer worked with a machine learning app to produce the images.
  • It's impossible to know if they're accurate, but they sure look plausible.
Keep reading Show less

Archaeologists identify contents of ancient Mayan drug containers

Scientists use new methods to discover what's inside drug containers used by ancient Mayan people.

A Muna-type paneled flask with distinctive serrated-edge decoration from AD 750-900.

Credit: WSU
Surprising Science
  • Archaeologists used new methods to identify contents of Mayan drug containers.
  • They were able to discover a non-tobacco plant that was mixed in by the smoking Mayans.
  • The approach promises to open up new frontiers in the knowledge of substances ancient people consumed.
Keep reading Show less

Ten “keys to reality” from a Nobel-winning physicist

To understand ourselves and our place in the universe, "we should have humility but also self-respect," Frank Wilczek writes in a new book.

Photo by Andy HYD on Unsplash
Surprising Science
In the spring of 1970, colleges across the country erupted with student protests in response to the Vietnam War and the National Guard's shooting of student demonstrators at Kent State University.
Keep reading Show less
Mind & Brain

This is your brain on political arguments

Debating is cognitively taxing but also important for the health of a democracy—provided it's face-to-face.

Scroll down to load more…