Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Psychopaths do feel regret – but only after they’ve crossed the line
They have the same feelings as normal people. It’s how they make decisions that’s different.

Utter the word psychopath and immediately ideas of a sadistic serial killer with a penchant for blood comes to mind. Would it surprise you to know that you may interact with one every day? In fact, psychologists have noted that some of the top CEOs and others who hold lofty positions, and even many regular people who do not, have this condition. You may know, love, or even be a psychopath and not even know it. The important thing here is to define what a psychopath is.

The traditional definition is someone who cannot empathize with others, and so does not feel shame or regret for negative actions towards them. Fans of the TV series Dexter recognize this as the internal struggle of the main character. Their inability to understand the emotions of others makes them antisocial, which could cause the psychopath to become more of a threat in the boardroom, on the sports field, or in a dark alley, to others.
But now a new study is altering the definition entirely. Harvard associate psychology professor Joshua Buckhotlz was its co-author. He and Arielle Baskin-Sommers of Yale University found that psychopaths aren't immune to empathy. Many do in fact feel regret when they hurt others.
What they cannot do is predict the outcomes of their choices or behavior. They somehow aren't in tune with social norms, those rules that keep the peace and act as a social glue, thereby maintaining the social order. It is this inability to predict outcomes that may lead to them to poor choices, viewed as improper or even ghastly by others.
Some psychopaths may have their heart in the right place. But they can't recognize when they've crossed the line.
Researchers recruited a number of incarcerated persons, some who were deemed psychopaths and others who were not, and had them play a game based on economics. A metric called prospective regret sensitivity was used to measure each participant's level of regret, based on decisions they had made during the game. Psychopaths were seen as making riskier moves, but had difficulty evaluating whether or not they would regret them afterward.
Though we think of it as one emotion, Buckholtz claims that regret is actually a two-part process. The first part is retrospective regret. This is the kind we ruminate over, from the past. We think about a painful experience and wish we had made a better choice. From there, we can vow to take a different path in the future.
The second is prospective regret, which is when we take information from the environment and make predictions on what will happen, and whether or not we will regret our choice. Buckhotlz and Baskin-Sommers showed that it was an inability to make decisions based on values and understand the probable outcome, and its impact on others that defines a psychopath. “It's almost like a blindness to future regret," Buckhotlz said. Though in the aftermath they feel remorse, they can't see it coming.
A large number of the incarcerated have psychopathic tendencies. This study may lead to retraining them to avoid poor decision making.
“Contrary to what you would expect based on these basic emotional-deficit models, their emotional responses to regret didn't predict incarceration." Buckhotlz said. Yet, “We know psychopathy is one of the biggest predictors of criminal behavior." Being able to train individuals to recognize signs of future regret could be a way to make a more compassionate psychopath, and one that might stay away from trouble, and incarceration.
Though we know much about the condition, we know very little about how psychopaths make decisions, researchers said. Psychologists have mostly delved into how their emotions work and what emotional experiences they have. But how they use that information and other signals from the environment to make decisions, has heretofore, never been studied. According to Buckhotlz, “Getting better insight into why psychopaths make such terrible choices, I think, is going to be very important for the next generation of psychopathy research."
Baskin-Sommers added further insight saying, “These findings highlight that psychopathic individuals are not simply incapable of regret [or other emotions], but that there is a more nuanced dysfunction that gets in the way of their adaptive functioning." Understanding this can help psychologists develop better methods for predicting psychopathic behavior and perhaps even train such individuals to recognize clues and steer clear of pitfalls, thus making better life decisions.
Think you might have psychopathic tendencies? Click here to find out:
There are 5 eras in the universe's lifecycle. Right now, we're in the second era.
Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.
Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft
- We're in the middle, or thereabouts, of the universe's Stelliferous era.
- If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
- Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
The 5 eras of the universe
<p>There are many ways to consider and discuss the past, present, and future of the universe, but one in particular has caught the fancy of many astronomers. First published in 1999 in their book <a href="https://amzn.to/2wFQLiL" target="_blank"><em>The Five Ages of the Universe: Inside the Physics of Eternity</em></a>, <a href="https://en.wikipedia.org/wiki/Fred_Adams" target="_blank">Fred Adams</a> and <a href="https://en.wikipedia.org/wiki/Gregory_P._Laughlin" target="_blank">Gregory Laughlin</a> divided the universe's life story into five eras:</p><ul><li>Primordial era</li><li>Stellferous era</li><li>Degenerate era</li><li>Black Hole Era</li><li>Dark era</li></ul><p>The book was last updated according to current scientific understandings in 2013.</p><p>It's worth noting that not everyone is a subscriber to the book's structure. Popular astrophysics writer <a href="https://www.forbes.com/sites/ethansiegel/#30921c93683e" target="_blank">Ethan C. Siegel</a>, for example, published an article on <a href="https://www.forbes.com/sites/startswithabang/2019/07/26/we-have-already-entered-the-sixth-and-final-era-of-our-universe/#7072d52d4e5d" target="_blank"><em>Medium</em></a> last June called "We Have Already Entered The Sixth And Final Era Of Our Universe." Nonetheless, many astronomers find the quintet a useful way of discuss such an extraordinarily vast amount of time.</p>The Primordial era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEyMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNjEzMjY1OX0.PRpvAoa99qwsDNprDme9tBWDim6mS7Mjx6IwF60fSN8/img.jpg?width=980" id="db4eb" class="rm-shortcode" data-rm-shortcode-id="0e568b0cc12ed624bb8d7e5ff45882bd" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="1049" />Image source: Sagittarius Production/Shutterstock
<p> This is where the universe begins, though what came before it and where it came from are certainly still up for discussion. It begins at the Big Bang about 13.8 billion years ago. </p><p> For the first little, and we mean <em>very</em> little, bit of time, spacetime and the laws of physics are thought not yet to have existed. That weird, unknowable interval is the <a href="https://www.universeadventure.org/eras/era1-plankepoch.htm" target="_blank">Planck Epoch</a> that lasted for 10<sup>-44</sup> seconds, or 10 million of a trillion of a trillion of a trillionth of a second. Much of what we currently believe about the Planck Epoch eras is theoretical, based largely on a hybrid of general-relativity and quantum theories called quantum gravity. And it's all subject to revision. </p><p> That having been said, within a second after the Big Bang finished Big Banging, inflation began, a sudden ballooning of the universe into 100 trillion trillion times its original size. </p><p> Within minutes, the plasma began cooling, and subatomic particles began to form and stick together. In the 20 minutes after the Big Bang, atoms started forming in the super-hot, fusion-fired universe. Cooling proceeded apace, leaving us with a universe containing mostly 75% hydrogen and 25% helium, similar to that we see in the Sun today. Electrons gobbled up photons, leaving the universe opaque. </p><p> About 380,000 years after the Big Bang, the universe had cooled enough that the first stable atoms capable of surviving began forming. With electrons thus occupied in atoms, photons were released as the background glow that astronomers detect today as cosmic background radiation. </p><p> Inflation is believed to have happened due to the remarkable overall consistency astronomers measure in cosmic background radiation. Astronomer <a href="https://www.youtube.com/watch?v=IGCVTSQw7WU" target="_blank">Phil Plait</a> suggests that inflation was like pulling on a bedsheet, suddenly pulling the universe's energy smooth. The smaller irregularities that survived eventually enlarged, pooling in denser areas of energy that served as seeds for star formation—their gravity pulled in dark matter and matter that eventually coalesced into the first stars. </p>The Stelliferous era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEzNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxMjA0OTcwMn0.GVCCFbBSsPdA1kciHivFfWlegOfKfXUfEtFKEF3otQg/img.jpg?width=980" id="bc650" class="rm-shortcode" data-rm-shortcode-id="c8f86bf160ecdea6b330f818447393cd" data-rm-shortcode-name="rebelmouse-image" data-width="481" data-height="720" />Image source: Casey Horner/unsplash
<p>The era we know, the age of stars, in which most matter existing in the universe takes the form of stars and galaxies during this active period. </p><p>A star is formed when a gas pocket becomes denser and denser until it, and matter nearby, collapse in on itself, producing enough heat to trigger nuclear fusion in its core, the source of most of the universe's energy now. The first stars were immense, eventually exploding as supernovas, forming many more, smaller stars. These coalesced, thanks to gravity, into galaxies.</p><p>One axiom of the Stelliferous era is that the bigger the star, the more quickly it burns through its energy, and then dies, typically in just a couple of million years. Smaller stars that consume energy more slowly stay active longer. In any event, stars — and galaxies — are coming and going all the time in this era, burning out and colliding.</p><p>Scientists predict that our Milky Way galaxy, for example, will crash into and combine with the neighboring Andromeda galaxy in about 4 billion years to form a new one astronomers are calling the Milkomeda galaxy.</p><p>Our solar system may actually survive that merger, amazingly, but don't get too complacent. About a billion years later, the Sun will start running out of hydrogen and begin enlarging into its red giant phase, eventually subsuming Earth and its companions, before shrining down to a white dwarf star.</p>The Degenerate era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE1MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTk3NDQyN30.gy4__ALBQrdbdm-byW5gQoaGNvFTuxP5KLYxEMBImNc/img.jpg?width=980" id="77f72" class="rm-shortcode" data-rm-shortcode-id="08bb56ea9fde2cee02d63ed472d79ca3" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Diego Barucco/Shutterstock/Big Think
<p>Next up is the Degenerate era, which will begin about 1 quintillion years after the Big Bang, and last until 1 duodecillion after it. This is the period during which the remains of stars we see today will dominate the universe. Were we to look up — we'll assuredly be outta here long before then — we'd see a much darker sky with just a handful of dim pinpoints of light remaining: <a href="https://earthsky.org/space/evaporating-giant-exoplanet-white-dwarf-star" target="_blank">white dwarfs</a>, <a href="https://earthsky.org/space/new-observations-where-stars-end-and-brown-dwarfs-begin" target="_blank">brown dwarfs</a>, and <a href="https://earthsky.org/astronomy-essentials/definition-what-is-a-neutron-star" target="_blank">neutron stars</a>. These"degenerate stars" are much cooler and less light-emitting than what we see up there now. Occasionally, star corpses will pair off into orbital death spirals that result in a brief flash of energy as they collide, and their combined mass may become low-wattage stars that will last for a little while in cosmic-timescale terms. But mostly the skies will be be bereft of light in the visible spectrum.</p><p>During this era, small brown dwarfs will wind up holding most of the available hydrogen, and black holes will grow and grow and grow, fed on stellar remains. With so little hydrogen around for the formation of new stars, the universe will grow duller and duller, colder and colder.</p><p>And then the protons, having been around since the beginning of the universe will start dying off, dissolving matter, leaving behind a universe of subatomic particles, unclaimed radiation…and black holes.</p>The Black Hole era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE2MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMjE0OTQ2MX0.ifwOQJgU0uItiSRg9z8IxFD9jmfXlfrw6Jc1y-22FuQ/img.jpg?width=980" id="103ea" class="rm-shortcode" data-rm-shortcode-id="f0e6a71dacf95ee780dd7a1eadde288d" data-rm-shortcode-name="rebelmouse-image" data-width="1400" data-height="787" />Image source: Vadim Sadovski/Shutterstock/Big Think
<p> For a considerable length of time, black holes will dominate the universe, pulling in what mass and energy still remain. </p><p> Eventually, though, black holes evaporate, albeit super-slowly, leaking small bits of their contents as they do. Plait estimates that a small black hole 50 times the mass of the sun would take about 10<sup>68</sup> years to dissipate. A massive one? A 1 followed by 92 zeros. </p><p> When a black hole finally drips to its last drop, a small pop of light occurs letting out some of the only remaining energy in the universe. At that point, at 10<sup>92</sup>, the universe will be pretty much history, containing only low-energy, very weak subatomic particles and photons. </p>The Dark Era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE5NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0Mzg5OTEyMH0.AwiPRGJlGIcQjjSoRLi6V3g5klRYtxQJIpHFgZdZkuo/img.jpg?width=980" id="60c77" class="rm-shortcode" data-rm-shortcode-id="7a857fb7f0d85cf4a248dbb3350a6e1c" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Big Think
<p>We can sum this up pretty easily. Lights out. Forever.</p>Dark energy: The apocalyptic wild card of the universe
Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.
- The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
- Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
- The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Five collectibles with better returns than the stock market
People often make a killing in stocks, but there are other ways to potentially turn major profits.
