New therapy cures cancer with just one injection

It neutralized not only the tumor it was injected into but malignancies all over the body.

Woman with cancer looks at her head in the mirror.
Woman with cancer looks at her head in the mirror. Credit:Getty Images.

Current cancer therapies have terrible side effects and aren’t always effective. And with things like radiotherapy and chemotherapy, the number of treatments one needs to endure makes side effects progressively worse over time. A new technique developed by researchers at Stanford University uses two agents which when combined, alert the body’s immune system to the presence of cancer, in order to eliminate it.


Just one injection can be effective for a solid tumor. Such a targeted approach could limit nasty side effects and may even be more effective than current therapies. These results were published in the journal Science Translational Medicine. Dr. Ronald Levy was the study’s senior author. He told Medical News Daily, "When we use these two agents together, we see the elimination of tumors all over the body."

Dr. Levy and colleagues injected minute levels of two “immune-stimulating agents,” into malignant solid tumors in mice. The most remarkable thing is that it treated not only the tumor it was injected into, but distant malignancies at other locations inside the body. Researchers believe it’ll be able to treat all different kinds of cancer. Using T-cells to kill cancer has long been a driving focus of immunotherapy.

Although T-cells already have incredibly powerful cancer-fighting properties, cancer cells have certain “tricks” to circumvent them, until they’ve multiplied enough to overwhelm the immune system entirely. Immunotherapy seeks to boost the immune systems capabilities, in order for it to recognize the cancer and neutralize it.

 

While current therapies can have increasingly severe side effects, this one is administered only once. Credit: Getty Images.

Clinical trials are currently underway, to see if the same effect occurs in humans. 15 patients, all with low-grade lymphoma, are taking part. Those with this particular type of cancer were selected because lymphoma is essentially a disease of the immune system and so, should show the strongest response to the therapy.

One of the agents has already gained FDA approval, while the other is part of an ongoing clinical trial as a treatment for lymphoma. This has helped streamline the process a bit. What’s also exciting is, in addition to being effective, the agents are inexpensive. “This method can ‘teach’ immune cells how to fight against that specific type of cancer,” Dr. Levy said, “which then allows them to migrate and destroy all other existing tumors.”

There are several different immunotherapy approaches in use today. Some activate the immune system everywhere in the body. Others remove the patient’s own immune cells and genetically engineer them to kill cancer. And others still turn off switches in immune cells which limit their cancer fighting abilities.

The drawbacks are that many of these experimental therapies are expensive or time consuming, or cause terrible side effects. According to Dr. Levy, “This approach bypasses the need to identify tumor-specific immune targets and doesn’t require wholesale activation of the immune system or customization of a patient’s immune cells.” The dual injection includes just one microgram (one-millionth of a gram) of each substance.

This therapy proves to be easy to administer, less expensive, and maybe even more effective than chemotherapy and radiotherapy. Credit: Getty Images.

The makeup of the injection includes a short, synthetic piece of DNA called CpG oligonucleotide. This binds to the receptor OX40, found on the surface of T-cells. The other is an antibody which binds to a T-cell and activates it. Once they make short work of the tumor, these energized T-cells travel elsewhere throughout the body, eliminating all of the same kind of cancer cells.

To test out the treatment, researchers injected 90 mice who had lymphoma with the mixture. 87 out of 90 became completely cancer-free. When tumors did recur in the remaining three, a second injection eliminated them completely, with no further recurrence. Mouse models with breast, skin, and colon cancer showed similar results. 

One stipulation, the T-cells can only target the type of cancer they first experienced. Mouse models that had lymphoma and colon cancer saw only the lymphoma eliminated. The T-cells get trained to take out a particular type of cancer, and that’s what they focus on.

Should this therapy be successful in humans, Dr. Levy and colleagues foresee it being injected after the surgical removal of a solid tumor, to make sure the cancer doesn’t recur. It might even take out any budding tumors that occur due to a genetic mutation. Dr. Levy said there’s no cancer it couldn’t treat, just so long as the immune system can infiltrate it.

To learn about other cutting-edge cancer treatments, click here.

 

Golden blood: The rarest blood in the world

We explore the history of blood types and how they are classified to find out what makes the Rh-null type important to science and dangerous for those who live with it.

What is the rarest blood type?

Abid Katib/Getty Images
Surprising Science
  • Fewer than 50 people worldwide have 'golden blood' — or Rh-null.
  • Blood is considered Rh-null if it lacks all of the 61 possible antigens in the Rh system.
  • It's also very dangerous to live with this blood type, as so few people have it.
Keep reading Show less

China's "artificial sun" sets new record for fusion power

China has reached a new record for nuclear fusion at 120 million degrees Celsius.

Credit: STR via Getty Images
Technology & Innovation

This article was originally published on our sister site, Freethink.

China wants to build a mini-star on Earth and house it in a reactor. Many teams across the globe have this same bold goal --- which would create unlimited clean energy via nuclear fusion.

But according to Chinese state media, New Atlas reports, the team at the Experimental Advanced Superconducting Tokamak (EAST) has set a new world record: temperatures of 120 million degrees Celsius for 101 seconds.

Yeah, that's hot. So what? Nuclear fusion reactions require an insane amount of heat and pressure --- a temperature environment similar to the sun, which is approximately 150 million degrees C.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it. In nuclear fusion, the extreme heat and pressure create a plasma. Then, within that plasma, two or more hydrogen nuclei crash together, merge into a heavier atom, and release a ton of energy in the process.

Nuclear fusion milestones: The team at EAST built a giant metal torus (similar in shape to a giant donut) with a series of magnetic coils. The coils hold hot plasma where the reactions occur. They've reached many milestones along the way.

According to New Atlas, in 2016, the scientists at EAST could heat hydrogen plasma to roughly 50 million degrees C for 102 seconds. Two years later, they reached 100 million degrees for 10 seconds.

The temperatures are impressive, but the short reaction times, and lack of pressure are another obstacle. Fusion is simple for the sun, because stars are massive and gravity provides even pressure all over the surface. The pressure squeezes hydrogen gas in the sun's core so immensely that several nuclei combine to form one atom, releasing energy.

But on Earth, we have to supply all of the pressure to keep the reaction going, and it has to be perfectly even. It's hard to do this for any length of time, and it uses a ton of energy. So the reactions usually fizzle out in minutes or seconds.

Still, the latest record of 120 million degrees and 101 seconds is one more step toward sustaining longer and hotter reactions.

Why does this matter? No one denies that humankind needs a clean, unlimited source of energy.

We all recognize that oil and gas are limited resources. But even wind and solar power --- renewable energies --- are fundamentally limited. They are dependent upon a breezy day or a cloudless sky, which we can't always count on.

Nuclear fusion is clean, safe, and environmentally sustainable --- its fuel is a nearly limitless resource since it is simply hydrogen (which can be easily made from water).

With each new milestone, we are creeping closer and closer to a breakthrough for unlimited, clean energy.

The science of sex, love, attraction, and obsession

The symbol for love is the heart, but the brain may be more accurate.

Videos
  • How love makes us feel can only be defined on an individual basis, but what it does to the body, specifically the brain, is now less abstract thanks to science.
  • One of the problems with early-stage attraction, according to anthropologist Helen Fisher, is that it activates parts of the brain that are linked to drive, craving, obsession, and motivation, while other regions that deal with decision-making shut down.
  • Dr. Fisher, professor Ted Fischer, and psychiatrist Gail Saltz explain the different types of love, explore the neuroscience of love and attraction, and share tips for sustaining relationships that are healthy and mutually beneficial.

Sex & Relationships

There never was a male fertility crisis

A new study suggests that reports of the impending infertility of the human male are greatly exaggerated.

Quantcast