Einstein’s Gravitational Theory Leads to Nobel Prize Win for Scientists Who Proved It

These scientists scooped up the Nobel by detecting a ripple in space-time.

Officials in Sweden have just announced the 2017 Nobel Prize in Physics. Three American scientists won for detecting, for the very first time, gravitational waves or ripples in space-time, which were first predicted by Einstein back in 1916. Rainer Weiss of MIT, and Barry Barish and Kip Thorne of Caltech were this year’s recipients.

Weiss will receive half of the 9 million Swedish kronor ($1.1 million), and Barish and Thorne will split the rest. Their employment of advanced theory and the fabrication of the unique LIGO instrument won them the prestigious award, according to officials at The Swedish Royal Academy of Sciences.

LIGO stands for Laser Interferometer Gravity-Wave Observatory. There are two such sites in the US currently, one in Louisiana and the other in Washington State. The reason they’re 1,000 miles (1,609 km) apart is to better detect gravitational waves emanating from space. A third observatory called Virgo just came online in Italy, to join the collaborative project. LIGO alone has thousands of researchers from 20 different countries. Weiss said to reporters at the event, "I view this more as a thing that recognizes the work of a thousand people, a really dedicated effort that’s been going on for — I hate to tell you — as long as 40 years.

A LIGO observatory is comprised of two, 2.5 mile (4 km) long tunnels set perpendicularly, like a big L. When a gravitational wave passes over Earth, the space in the tunnel gets compacted in one direction and stretched in another. This tiny fluctuation can be detected by laser. The instrument is so sensitive, it picks up fluctuations in space-time thousands of times smaller than the nucleus of an atom.

One of the tunnels at Virgo. Credit: Virgo Collaboration.

Gravitational observatories were first conceived 50 years ago. In the mid-70s, the laureates came together to try to construct what is now LIGO. Weiss had already designed a laser-based interferometer by then. What was particularly advantageous in his model is it filtered out certain unwanted background noise.  

Rather than a straight line, Einstein theorized that space is curved and that tension between large bodies, such as Earth and the sun, effectively bend space-time. With extremely massive events, like a supernova or a black hole collision, gravitational waves are sent rippling throughout the universe at the speed of light. Where Einstein went wrong is that he thought since these waves are so minuscule, we’d never be able to detect them.

While we’ve explored the universe through instruments that detect cosmic rays, neutrinos, and electromagnetic radiation, gravitational waves offer an entirely new aperture in which to view the cosmos. According to the announcement’s press release, “This is something completely new and different, opening up unseen worlds. A wealth of discoveries awaits those who succeed in capturing the waves and interpreting their message.”

The LIGO observatory was first set up in 1999. In 2014, it received an upgrade, making it much more powerful. It first captured a ripple in space-time in 2015. This was the aftereffect of two black holes colliding, each 30 times the mass of our sun. The result was an even bigger black hole. The event occurred 1.3 billion light-years away. One light-year is about 5.9 trillion miles (9.5 trillion km). Ariel Goobar of the Royal Swedish Academy of Sciences compared LIGO to “when Galileo discovered the telescope.”

Thorne, speaking to the Associated Press by phone, called the wave detection "a win for the human race as a whole.” He added, “These gravitational waves will be powerful ways for the human race to explore the universe." Meanwhile, Barish called it "a win for Einstein, and a very big one."

Virgo is an important piece, since it allows researchers to better determine the location of the origin of ripples in space-time. More gravitational observatories are now being built. Scientists believe such facilities may allow us to find crucial particles never before discovered, such as those which may only exist in the vicinity of black holes.

To learn more details about how a laser-based interferometer works, click here:

Related Articles

Are people with more self-discipline happier?

Why self-control makes your life better, and how to get more of it.

Buddhist monks of all nations mediate in Thailand. Monks are well known for their self-discipline and restrictive lifestyle. Is it possible that this leads them to happiness?
(Photo by Geem Drake/SOPA Images/LightRocket via Getty Images)
Personal Growth
  • Research demonstrates that people with higher levels of self-control are happier over both the short and long run.
  • Higher levels of self-control are correlated with educational, occupational, and social success.
  • It was found that the people with the greatest levels of self-control avoid temptation rather than resist it at every turn.
Keep reading Show less

Quantum computing is on the way

Ready your Schrödinger's Cat Jokes.

Quantum entanglement. Conceptual artwork of a pair of entangled quantum particles or events (left and right) interacting at a distance. Quantum entanglement is one of the consequences of quantum theory. Two particles will appear to be linked across space and time, with changes to one of the particles (such as an observation or measurement) affecting the other one. This instantaneous effect appears to be independent of both space and time, meaning that, in the quantum realm, effect may precede cause.
Technology & Innovation
  • For a time, quantum computing was more theory than fact.
  • That's starting to change.
  • New quantum computer designs look like they might be scalable.

Quantum computing has existed in theory since the 1980's. It's slowly making its way into fact, the latest of which can be seen in a paper published in Nature called, "Deterministic teleportation of a quantum gate between two logical qubits."

To ensure that we're all familiar with a few basic terms: in electronics, a 'logic gate' is something that takes in one or more than one binary inputs and produces a single binary output. To put it in reductive terms: if you produce information that goes into a chip in your computer as a '0,' the logic gate is what sends it out the other side as a '1.'

A quantum gate means that the '1' in question here can — roughly speaking — go back through the gate and become a '0' once again. But that's not quite the whole of it.

A qubit is a single unit of quantum information. To continue with our simple analogy: you don't have to think about computers producing a string of information that is either a zero or a one. A quantum computer can do both, simultaneously. But that can only happen if you build a functional quantum gate.

That's why the results of the study from the folks at The Yale Quantum Institute saying that they were able to create a quantum gate with a "process fidelity" of 79% is so striking. It could very well spell the beginning of the pathway towards realistic quantum computing.

The team went about doing this through using a superconducting microwave cavity to create a data qubit — that is, they used a device that operates a bit like a organ pipe or a music box but for microwave frequencies. They paired that data qubit with a transmon — that is, a superconducting qubit that isn't as sensitive to quantum noise as it otherwise could be, which is a good thing, because noise can destroy information stored in a quantum state. The two are then connected through a process called a 'quantum bus.'

That process translates into a quantum property being able to be sent from one location to the other without any interaction between the two through something called a teleported CNOT gate, which is the 'official' name for a quantum gate. Single qubits made the leap from one side of the gate to the other with a high degree of accuracy.

Above: encoded qubits and 'CNOT Truth table,' i.e., the read-out.

The team then entangled these bits of information as a way of further proving that they were literally transporting the qubit from one place to somewhere else. They then analyzed the space between the quantum points to determine that something that doesn't follow the classical definition of physics occurred.

They conclude by noting that "... the teleported gate … uses relatively modest elements, all of which are part of the standard toolbox for quantum computation in general. Therefore ... progress to improve any of the elements will directly increase gate performance."

In other words: they did something simple and did it well. And that the only forward here is up. And down. At the same time.

Why Japan's hikikomori isolate themselves from others for years

These modern-day hermits can sometimes spend decades without ever leaving their apartments.

700,000 Japanese people are thought to be hikikomori, modern-day hermits who never leave their apartments (BEHROUZ MEHRI/AFP/Getty Images).
Mind & Brain
  • A hikikomori is a type of person in Japan who locks themselves away in their bedrooms, sometimes for years.
  • This is a relatively new phenomenon in Japan, likely due to rigid social customs and high expectations for academic and business success.
  • Many believe hikikomori to be a result of how Japan interprets and handles mental health issues.
Keep reading Show less