Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Antimicrobial resistance is a growing threat to good health and well-being

Antimicrobial resistance is growing worldwide, rendering many "work horse" medicines ineffective. Without intervention, drug-resistant pathogens could lead to millions of deaths by 2050. Thankfully, companies like Pfizer are taking action.

Image courtesy of Pfizer.
  • Antimicrobial-resistant pathogens are one of the largest threats to global health today.
  • As we get older, our immune systems age, increasing our risk of life threatening infections. Without reliable antibiotics, life expectancy could decline for the first time in modern history.
  • If antibiotics become ineffective, common infections could result in hospitalization or even death. Life-saving interventions like cancer treatments and organ transplantation would become more difficult, more often resulting in death. Routine procedures would become hard to perform.
  • Without intervention, resistant pathogens could result in 10 million annual deaths by 2050.
  • By taking a multi-faceted approach—inclusive of adherence to good stewardship, surveillance and responsible manufacturing practices, as well as an emphasis on prevention and treatment—companies like Pfizer are fighting to help curb the spread.

Antibiotics have revolutionized healthcare.

With the advent of modern medicine, life threatening diseases such as smallpox, pertussis (whooping cough), tetanus (lockjaw) and measles have essentially been eradicated. More importantly, complicated procedures that increase our risk of infections—including plastic surgery, joint replacement, cancer treatments, and organ transplant, among others—have become routine because any resulting infection can be treated effectively.

But modern medicine depends on antibiotics to treat and cure many kinds of infections—infections that could impact anyone from the premature baby to the elderly. Unfortunately, antimicrobial resistance (AMR) has made some infections impossible and others increasingly difficult to treat, threatening the progress we have worked so hard to achieve.

AMR causes 700,000 deaths annually across the globe, a number projected to skyrocket to 10 million by 2050 without intervention.

What is antimicrobial resistance?

Antimicrobial drugs target the microorganisms that cause infection, such as bacteria, viruses, fungi, and parasites, and either kills them or inhibits their growth.

Anytime an antibiotic is used, either appropriately or inappropriately, the 30 trillion or more bacteria that live in or on our bodies undergo selective pressure to become resistant. Any that are sensitive to the antibiotic are killed, while those that remain are resistant or immune from the effects of that antibiotic. This is called AMR. Once a bacterial pathogen has reached a state of resistance to several types of antibiotics, it is colloquially referred to as a "superbug."

The consequences of AMR can be stated simply: Commonly used antibiotics are rendered ineffective against that pathogen. If an infection caused by resistant bacteria is treated by that antibiotic, the bacteria are unaffected, resulting in disease persistence, worsening of the infection and/or even death. Treatments for both minor and serious infections are compromised, surgeries and other routine procedures become riskier, and the treatment of diseases like pneumonia and tuberculosis becomes very complicated. For example, according to the World Health Organization, resistance in Klebsiella pneumoniae—a common intestinal bacterium that is a major cause of hospital-acquired infections, bloodstream infections, and infections in newborns and intensive-care unit patients—has spread to all regions of the world. In some countries, because of resistance, carbapenem antibiotics (often the "last resort" treatments) do not work in more than half of people treated for these types of infections. This results in prolonged hospitalization, increased medical costs and higher rates of death for infections that were easily treated only a few years ago.

"What's more, AMR is a truly global issue—it can affect anyone, of any age, in any country," Jill Inverso, Pfizer's Vice President of Global Medical Affairs and Anti-Infectives, told Big Think.

AMR causes 700,000 deaths annually across the globe, a number projected to skyrocket to 10 million by 2050 without intervention. The rise of resistant pathogens is causing many countries to accrue significantly higher healthcare costs due to longer duration of illness, additional tests, and the need for different medicines to treat patients.

And these costs add up. The World Bank Group estimates that AMR could reduce annual global gross domestic product from 1.1–3.8 percent depending on severity, with up to $10.8 trillion in additional health expenditures.

At Pfizer, we take this growing threat very seriously and are driven by our desire to protect global public health and address the medical needs of people suffering from infectious diseases.

Giving antimicrobial resistance a helping hand

The development of bacterial resistance to antibiotics is a natural process. Unlike almost every other class of drugs, antibiotics drive their own obsolescence by selecting antibiotic-resistant bacteria, even when used appropriately according to guidelines. When this happens, resistant bacteria survive and continue to multiply, causing the infection to worsen. These resistant bacteria can then also spread to other patients, causing new infections with these bacteria that are difficult to treat.

Overuse and misuse of antibiotics accelerates this process without providing any benefit to the patient. This happens when patients take a drug without need, do not finish their dose or stop taking the medication mid-course; it could also happen when a drug is either overprescribed or prescribed for the wrong duration/type of illness. All of these misuses create environments in which pathogens are exposed to drugs more often, allowing them to acclimate and breed resistance without any benefit to the patient.

Hence, antibiotics must be used wisely and sparingly.

Fighting the resistance

WHO calls AMR an "increasingly serious threat to global public health" and one that "requires action across all government sectors and society." Its widespread growth is threatening the United Nations General Assembly's Sustainable Development Goal of Good Health and Well-Being.

Companies like Pfizer are heavily committed to the fight against AMR, taking action across a variety of areas such as surveillance, stewardship, and prevention and treatment.

On the surveillance front, Pfizer is proud to sponsor one of the largest AMR surveillance programs in the world, the Antimicrobial Testing Leadership and Surveillance (or ATLAS). ATLAS monitors real-time changes in bacterial resistance and tracks these trends in real-time. Gathering information from more than 760 hospitals across 73 countries in many underserved areas, ATLAS has generated 14 years of continuous global data on bacteria. Researchers and healthcare professionals can access ATLAS's data—free of charge—to study resistance trends, even in emerging market countries like Africa, Asia, and Latin America.

"At Pfizer, we take this growing threat very seriously," Inverso added, "and are driven by our desire to protect global public health and address the medical needs of people suffering from infectious diseases."

Pfizer also encourages good stewardship practices and supports education and training programs to help ensure patients receive the correct antibiotic only if needed, at the right dose and for the right duration.

"We believe that everybody can play a part in AMR stewardship by not taking an antibiotic unless provided by a healthcare professional, sticking to antibiotic regimens when prescribed, and keeping their vaccinations up to date," said Inverso. She added, "Vaccines are administered to help prevent infections from happening in the first place, thereby reducing the need for antibiotic usage that can lead to the development of resistance."

To date, several studies have demonstrated the beneficial role vaccines play in the reduction of AMR, such as reducing the use of antibiotics by preventing bacterial infections which may, in turn, prevent antimicrobial resistant infections from developing. Pfizer is committed to continue the development of new, innovative vaccines to help prevent infectious diseases globally.

We believe that everybody can play a part in AMR stewardship by not taking an antibiotic unless provided by a healthcare professional, sticking to antibiotic regimens when prescribed, and keeping their vaccinations up to date.

Given this, we should ask ourselves the following:

  • Have I ever not finished an antibiotic given to me by my doctor?
  • Have I ever used an antibiotic given to someone else?
  • Am I up-to-date on my vaccinations that prevent infections that would need antibiotics?
  • Have I ever demanded an antibiotic for myself or a child that the doctor thought was caused by a virus?
  • Have I ever saved antibiotics given to me for one infection and used it at a different time?

The key takeaway? AMR is a pervasive, growing threat that cannot be tamed without the collective efforts of government, industry, health systems, society and others. Working together, we may have a fighting chance.

More From Pfizer
Related Articles

Why are we fascinated by true crime stories?

Several experts have weighed in on our sometimes morbid curiosity and fascination with true crime stories.

Image by MyImages - Micha on Shutterstock
Mind & Brain
  • True crime podcasts can get as many as 500,000 downloads per month. In the Top 100 Podcasts of 2020 list for Apple US, several true crime podcasts ranked within the Top 20.
  • Our fascination with true crime isn't just limited to podcasts, with Netflix documentaries like "Confessions of a Killer: The Ted Bundy Tapes" scoring high popularity with viewers.
  • Several experts weight in on our fascination with true crime stories with theories including fear-based adrenaline rushes to the inherent need to understand the human mind.
Keep reading Show less

Churches received up to $10 billion in stimulus funding. They want more.

Apparently the Catholic Church is a small business.

Photo by Olivier Douliery-Pool via Getty Images
Culture & Religion
  • Churches and ministries received up to $10 billion in federal assistance during the first round of stimulus.
  • The Catholic Church exploited a loophole to be considered a "small business" and received up to $3.5 billion in forgivable loans.
  • With stimulus measures ending last week, up to 40 million Americans are in danger of losing their homes.
Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Quantcast