Antimicrobial resistance is a growing threat to good health and well-being

Antimicrobial resistance is growing worldwide, rendering many "work horse" medicines ineffective. Without intervention, drug-resistant pathogens could lead to millions of deaths by 2050. Thankfully, companies like Pfizer are taking action.

Image courtesy of Pfizer.
  • Antimicrobial-resistant pathogens are one of the largest threats to global health today.
  • As we get older, our immune systems age, increasing our risk of life threatening infections. Without reliable antibiotics, life expectancy could decline for the first time in modern history.
  • If antibiotics become ineffective, common infections could result in hospitalization or even death. Life-saving interventions like cancer treatments and organ transplantation would become more difficult, more often resulting in death. Routine procedures would become hard to perform.
  • Without intervention, resistant pathogens could result in 10 million annual deaths by 2050.
  • By taking a multi-faceted approach—inclusive of adherence to good stewardship, surveillance and responsible manufacturing practices, as well as an emphasis on prevention and treatment—companies like Pfizer are fighting to help curb the spread.

Antibiotics have revolutionized healthcare.

With the advent of modern medicine, life threatening diseases such as smallpox, pertussis (whooping cough), tetanus (lockjaw) and measles have essentially been eradicated. More importantly, complicated procedures that increase our risk of infections—including plastic surgery, joint replacement, cancer treatments, and organ transplant, among others—have become routine because any resulting infection can be treated effectively.

But modern medicine depends on antibiotics to treat and cure many kinds of infections—infections that could impact anyone from the premature baby to the elderly. Unfortunately, antimicrobial resistance (AMR) has made some infections impossible and others increasingly difficult to treat, threatening the progress we have worked so hard to achieve.

AMR causes 700,000 deaths annually across the globe, a number projected to skyrocket to 10 million by 2050 without intervention.

What is antimicrobial resistance?

Antimicrobial drugs target the microorganisms that cause infection, such as bacteria, viruses, fungi, and parasites, and either kills them or inhibits their growth.

Anytime an antibiotic is used, either appropriately or inappropriately, the 30 trillion or more bacteria that live in or on our bodies undergo selective pressure to become resistant. Any that are sensitive to the antibiotic are killed, while those that remain are resistant or immune from the effects of that antibiotic. This is called AMR. Once a bacterial pathogen has reached a state of resistance to several types of antibiotics, it is colloquially referred to as a "superbug."

The consequences of AMR can be stated simply: Commonly used antibiotics are rendered ineffective against that pathogen. If an infection caused by resistant bacteria is treated by that antibiotic, the bacteria are unaffected, resulting in disease persistence, worsening of the infection and/or even death. Treatments for both minor and serious infections are compromised, surgeries and other routine procedures become riskier, and the treatment of diseases like pneumonia and tuberculosis becomes very complicated. For example, according to the World Health Organization, resistance in Klebsiella pneumoniae—a common intestinal bacterium that is a major cause of hospital-acquired infections, bloodstream infections, and infections in newborns and intensive-care unit patients—has spread to all regions of the world. In some countries, because of resistance, carbapenem antibiotics (often the "last resort" treatments) do not work in more than half of people treated for these types of infections. This results in prolonged hospitalization, increased medical costs and higher rates of death for infections that were easily treated only a few years ago.

"What's more, AMR is a truly global issue—it can affect anyone, of any age, in any country," Jill Inverso, Pfizer's Vice President of Global Medical Affairs and Anti-Infectives, told Big Think.

AMR causes 700,000 deaths annually across the globe, a number projected to skyrocket to 10 million by 2050 without intervention. The rise of resistant pathogens is causing many countries to accrue significantly higher healthcare costs due to longer duration of illness, additional tests, and the need for different medicines to treat patients.

And these costs add up. The World Bank Group estimates that AMR could reduce annual global gross domestic product from 1.1–3.8 percent depending on severity, with up to $10.8 trillion in additional health expenditures.

At Pfizer, we take this growing threat very seriously and are driven by our desire to protect global public health and address the medical needs of people suffering from infectious diseases.

Giving antimicrobial resistance a helping hand

The development of bacterial resistance to antibiotics is a natural process. Unlike almost every other class of drugs, antibiotics drive their own obsolescence by selecting antibiotic-resistant bacteria, even when used appropriately according to guidelines. When this happens, resistant bacteria survive and continue to multiply, causing the infection to worsen. These resistant bacteria can then also spread to other patients, causing new infections with these bacteria that are difficult to treat.

Overuse and misuse of antibiotics accelerates this process without providing any benefit to the patient. This happens when patients take a drug without need, do not finish their dose or stop taking the medication mid-course; it could also happen when a drug is either overprescribed or prescribed for the wrong duration/type of illness. All of these misuses create environments in which pathogens are exposed to drugs more often, allowing them to acclimate and breed resistance without any benefit to the patient.

Hence, antibiotics must be used wisely and sparingly.

Fighting the resistance

WHO calls AMR an "increasingly serious threat to global public health" and one that "requires action across all government sectors and society." Its widespread growth is threatening the United Nations General Assembly's Sustainable Development Goal of Good Health and Well-Being.

Companies like Pfizer are heavily committed to the fight against AMR, taking action across a variety of areas such as surveillance, stewardship, and prevention and treatment.

On the surveillance front, Pfizer is proud to sponsor one of the largest AMR surveillance programs in the world, the Antimicrobial Testing Leadership and Surveillance (or ATLAS). ATLAS monitors real-time changes in bacterial resistance and tracks these trends in real-time. Gathering information from more than 760 hospitals across 73 countries in many underserved areas, ATLAS has generated 14 years of continuous global data on bacteria. Researchers and healthcare professionals can access ATLAS's data—free of charge—to study resistance trends, even in emerging market countries like Africa, Asia, and Latin America.

"At Pfizer, we take this growing threat very seriously," Inverso added, "and are driven by our desire to protect global public health and address the medical needs of people suffering from infectious diseases."

Pfizer also encourages good stewardship practices and supports education and training programs to help ensure patients receive the correct antibiotic only if needed, at the right dose and for the right duration.

"We believe that everybody can play a part in AMR stewardship by not taking an antibiotic unless provided by a healthcare professional, sticking to antibiotic regimens when prescribed, and keeping their vaccinations up to date," said Inverso. She added, "Vaccines are administered to help prevent infections from happening in the first place, thereby reducing the need for antibiotic usage that can lead to the development of resistance."

To date, several studies have demonstrated the beneficial role vaccines play in the reduction of AMR, such as reducing the use of antibiotics by preventing bacterial infections which may, in turn, prevent antimicrobial resistant infections from developing. Pfizer is committed to continue the development of new, innovative vaccines to help prevent infectious diseases globally.

We believe that everybody can play a part in AMR stewardship by not taking an antibiotic unless provided by a healthcare professional, sticking to antibiotic regimens when prescribed, and keeping their vaccinations up to date.

Given this, we should ask ourselves the following:

  • Have I ever not finished an antibiotic given to me by my doctor?
  • Have I ever used an antibiotic given to someone else?
  • Am I up-to-date on my vaccinations that prevent infections that would need antibiotics?
  • Have I ever demanded an antibiotic for myself or a child that the doctor thought was caused by a virus?
  • Have I ever saved antibiotics given to me for one infection and used it at a different time?

The key takeaway? AMR is a pervasive, growing threat that cannot be tamed without the collective efforts of government, industry, health systems, society and others. Working together, we may have a fighting chance.

More From Pfizer
Related Articles

The power of authority: how easily we do what we’re told

Milgram's experiment is rightly famous, but does it show what we think it does?

Credit: MEHDI FEDOUACH via Getty Images
Mind & Brain
  • In the 1960s, Stanley Milgram was sure that good, law-abiding Americans would never be able to follow orders like the Germans in the Holocaust.
  • His experiments proved him spectacularly wrong. They showed just how many of us are willing to do evil if only we're told to by an authority figure.
  • Yet, parts of the experiment were set up in such a way that we should perhaps conclude something a bit more nuanced.
Keep reading Show less

We're winning the war on cancer

As the American population grows, fewer people will die of cancer.

Credit: JEFF PACHOUD via Getty Images
Surprising Science
  • A new study projects that cancer deaths will decrease in relative and absolute terms by 2040.
  • The biggest decrease will be among lung cancer deaths, which are predicted to fall by 50 percent.
  • Cancer is like terrorism: we cannot eliminate it entirely, but we can minimize its influence.
Keep reading Show less

China's "artificial sun" sets new record for fusion power

China has reached a new record for nuclear fusion at 120 million degrees Celsius.

Credit: STR via Getty Images
Technology & Innovation

This article was originally published on our sister site, Freethink.

China wants to build a mini-star on Earth and house it in a reactor. Many teams across the globe have this same bold goal --- which would create unlimited clean energy via nuclear fusion.

But according to Chinese state media, New Atlas reports, the team at the Experimental Advanced Superconducting Tokamak (EAST) has set a new world record: temperatures of 120 million degrees Celsius for 101 seconds.

Yeah, that's hot. So what? Nuclear fusion reactions require an insane amount of heat and pressure --- a temperature environment similar to the sun, which is approximately 150 million degrees C.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it. In nuclear fusion, the extreme heat and pressure create a plasma. Then, within that plasma, two or more hydrogen nuclei crash together, merge into a heavier atom, and release a ton of energy in the process.

Nuclear fusion milestones: The team at EAST built a giant metal torus (similar in shape to a giant donut) with a series of magnetic coils. The coils hold hot plasma where the reactions occur. They've reached many milestones along the way.

According to New Atlas, in 2016, the scientists at EAST could heat hydrogen plasma to roughly 50 million degrees C for 102 seconds. Two years later, they reached 100 million degrees for 10 seconds.

The temperatures are impressive, but the short reaction times, and lack of pressure are another obstacle. Fusion is simple for the sun, because stars are massive and gravity provides even pressure all over the surface. The pressure squeezes hydrogen gas in the sun's core so immensely that several nuclei combine to form one atom, releasing energy.

But on Earth, we have to supply all of the pressure to keep the reaction going, and it has to be perfectly even. It's hard to do this for any length of time, and it uses a ton of energy. So the reactions usually fizzle out in minutes or seconds.

Still, the latest record of 120 million degrees and 101 seconds is one more step toward sustaining longer and hotter reactions.

Why does this matter? No one denies that humankind needs a clean, unlimited source of energy.

We all recognize that oil and gas are limited resources. But even wind and solar power --- renewable energies --- are fundamentally limited. They are dependent upon a breezy day or a cloudless sky, which we can't always count on.

Nuclear fusion is clean, safe, and environmentally sustainable --- its fuel is a nearly limitless resource since it is simply hydrogen (which can be easily made from water).

With each new milestone, we are creeping closer and closer to a breakthrough for unlimited, clean energy.

Quantcast