Why Ancient Roman concrete lasts for millennia but ours crumbles in decades

Scientists solve the mystery of why 2000-year-old Roman concrete still stands strong.

Drilling in an ancient Roman structure.
Drilling at a marine structure in Portus Cosanus, Tuscany, 2003. Photo credit: J. P. Oleson.

Scientists resolved the mystery of why coastal structures built by ancient Romans 2,000 years ago are still standing. The concrete used by Roman builders in piers and harbors was made in such a way that it grew even stronger over time. Modern concrete, by comparison, tends to decay in just decades when exposed to saltwater. These findings could have an important role to play as many communities worldwide brace for rising sea levels.


Romans created concrete by mixing volcanic ash, quicklime and chunks of volcanic rock. Even though they figured out the ingredients, scientists still didn’t know the recipe. How did the Romans manage to make the concrete so long-lasting? The key turned out to be in the chemical reaction caused by the addition of seawater.

 

mary-beard-on-sexual-practices-of-ancient-romans

The Roman concrete was made to interact with its environment, as opposed to modern concrete which stays inert and gets damaged over time. Seawater is the reason why the mixture gets stronger. As seawater reacts with volcanic material, new minerals are created that reinforce the concrete.

Researchers, led by University of Utah geologist Marie Jackson, looked at the microscopic structures of Roman concrete samples by subjecting them to numerous spectroscopic tests and imaging techniques. The tests showed a rare reaction took place that spurred the growth of aluminous tobermorite crystals. Further geology detective work proved that the crystals were formed when seawater percolated through the little cracks in the Roman concrete, reacting to the mineral phillipsite, found in volcanic rock.

Jackson expressed her admiration for the genius of the Romans - 

“They spent a tremendous amount of work [on developing] this – they were very, very intelligent people,” said Marie Jackson.

Structures like the Pantheon and Trajan’s Markets in Rome were also built with this kind of concrete.

Roman author Pliny the Elder, who wrote the ancient world’s famous science tract “Natural History” once praised Roman concrete, writing “that as soon as it comes into contact with the waves of the sea and is submerged becomes a single stone mass, impregnable to the waves." 

Indeed, that’s proven to be true. Jackson is now working on recreating Roman concrete using seawater in San Francisco. This work might prove useful in building longer-lasting and stronger sea walls - a fact of growing importance. A study by European scientists predicts the costs of new coastal reinforcements will reach as high as $71 billion per year during the 21st century. Without them, coastal flooding will lead to trillions of dollars in damages.

Check out this video from the University of Utah on how seawater strengthens Roman concrete:

Read the study in American Mineralogist.

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less

The cost of world peace? It's much less than the price of war

The world's 10 most affected countries are spending up to 59% of their GDP on the effects of violence.

Mario Tama/Getty Images
Politics & Current Affairs
  • Conflict and violence cost the world more than $14 trillion a year.
  • That's the equivalent of $5 a day for every person on the planet.
  • Research shows that peace brings prosperity, lower inflation and more jobs.
  • Just a 2% reduction in conflict would free up as much money as the global aid budget.
  • Report urges governments to improve peacefulness, especially amid COVID-19.
Keep reading Show less

The evolution of modern rainforests began with the dinosaur-killing asteroid

The lush biodiversity of South America's rainforests is rooted in one of the most cataclysmic events that ever struck Earth.

Velociraptor Dinosaur in the Rainforest

meen_na via Adobe Stock
Surprising Science
  • One especially mysterious thing about the asteroid impact, which killed the dinosaurs, is how it transformed Earth's tropical rainforests.
  • A recent study analyzed ancient fossils collected in modern-day Colombia to determine how tropical rainforests changed after the bolide impact.
  • The results highlight how nature is able to recover from cataclysmic events, though it may take millions of years.
Keep reading Show less
Quantcast