We Are “Extragalactic Immigrants” from Faraway Galaxies, Discover Astrophysicists

Northwestern University researchers discover the unexpected origins of half the atoms in our bodies.


Not only are we made of stardust, but we may come from a galaxy far, far away. Astrophysicists discovered that up to half of the matter in our Milky Way galaxy comes from other, distant galaxies.

The scientists used supercomputer simulations to make the surprising discovery that galaxies get matter through intergalactic transfer. Supernova explosions within one galaxy eject so much gas that it gets picked up by galactic winds that transport it to other galaxies. That way atoms get moved from one part of the cosmos to another. 

“Given how much of the matter out of which we formed may have come from other galaxies, we could consider ourselves space travelers or extragalactic immigrants,” said Daniel Anglés-Alcázar, a postdoctoral fellow at Northwestern who led the study.  

He added that it’s likely a large amount of the matter in the Milky Way came from other galaxies after it got “kicked out by a powerful wind, traveled across intergalactic space and eventually found its new home in the Milky Way.”

This would have taken several billion years to accomplish, even if galactic winds can move at several hundred kilometers per second. 

Check out this animation illustrating the intergalactic transfer of gas:

Anglés-Alcázar developed advanced algorithms that mined the data generated by researchers from the FIRE (“Feedback in Realistic Environments”) project, led by Northwestern professor Claude-André Faucher-Giguère. The FIRE team created numerical simulations that resulted in realistic 3-D models of galaxies, from the Big Bang to the present. The algorithm by Anglés-Alcázar was able to quantify how the matter was transferred between the galaxies. 

“This study transforms our understanding of how galaxies formed from the Big Bang,” explained Faucher-Giguère, a co-author of the study. “What this new mode implies is that up to one-half of the atoms around us — including in the solar system, on Earth and in each one of us — comes not from our own galaxy but from other galaxies, up to one million light years away.”

The team was able to track how gas from smaller galaxies ends up in the larger ones, like our Milky Way, where the gas forms stars. 

“Our origins are much less local than we previously thought,” pointed out Faucher-Giguère. “This study gives us a sense of how things around us are connected to distant objects in the sky.” 

The findings provide unique insights into how galaxies grow. The scientists plan to test their results by collaborating with observational astronomers working on the Hubble Space Telescope and ground-based observatories.

Check out the study “The Cosmic Baryon Cycle and Galaxy Mass Assembly in the FIRE Simulations” here. It is published by the Monthly Notices of the Royal Astronomical Society.

Related Articles

How schizophrenia is linked to common personality type

Both schizophrenics and people with a common personality type share similar brain patterns.

(shutterstock)
Mind & Brain
  • A new study shows that people with a common personality type share brain activity with patients diagnosed with schizophrenia.
  • The study gives insight into how the brain activity associated with mental illnesses relates to brain activity in healthy individuals.
  • This finding not only improves our understanding of how the brain works but may one day be applied to treatments.
Keep reading Show less

Human skeletal stem cells isolated in breakthrough discovery

It's a development that could one day lead to much better treatments for osteoporosis, joint damage, and bone fractures.

Image: Nissim Benvenisty
Surprising Science
  • Scientists have isolated skeletal stem cells in adult and fetal bones for the first time.
  • These cells could one day help treat damaged bone and cartilage.
  • The team was able to grow skeletal stem cells from cells found within liposuctioned fat.
Keep reading Show less

How exercise helps your gut bacteria

Gut bacteria play an important role in how you feel and think and how well your body fights off disease. New research shows that exercise can give your gut bacteria a boost.

National Institutes of Health
Surprising Science
  • Two studies from the University of Illinois show that gut bacteria can be changed by exercise alone.
  • Our understanding of how gut bacteria impacts our overall health is an emerging field, and this research sheds light on the many different ways exercise affects your body.
  • Exercising to improve your gut bacteria will prevent diseases and encourage brain health.
Keep reading Show less