Scientists Invent a Device That Can Detect 17 Diseases From Your Breath, Including Cancers

Scientists create a portable device that can detect 17 diseases, including 8 different cancers, straight from a person's breath.

Scientists have created a device straight out of Star Trek that can detect 17 diseases, including 8 different types of cancer, just from your breath. The tricorder-like Na-nose can spot chemical signatures of the diseases and it’s hoped it will revolutionize treatment of many dangerous illnesses by spreading convenient early-detection technology. The international team of researchers from 5 countries, led by Professor Hassam Haick of the Technion-Israel Institute of Technology, is next developing Sniffphone for disease detection right through your smartphone. 


The Na-nose device features a sensor nano-array of carbon nanotubes and tiny gold particles controlled by AI software. This program can analyze human breath samples for special chemical signatures that correspond to various diseases. This works because people exhale over a 100 unique chemicals called volatile organic compounds (VOCs) and the team proved that each disease has a very specific chemical signature within a person’s VOC. The scientists used mass spectrometry to figure out a 13-component "breathprint" for each of the 17 diseases in the study. 

"We found that just as we each have a unique fingerprint, each of the diseases we studied has an unique breath print, a 'signature' of chemical components," said Professor Haick. "We have a device which can discriminate between them, which is elegant and affordable."

 Why is breath particularly convenient for diagnosis?

“Breath is an excellent raw material for diagnosis,” Professor Haick told Haaretz. “It is available without the need for invasive and unpleasant procedures, it’s not dangerous, and you can sample it again and again if necessary.”

Besides cancers, the conditions the device can diagnose include Parkinson’s, multiple sclerosis. Crohn’s disease and kidney disease. The Na-nose was tested on 2,800 breath samples from 1,404 people in the U.S., Israel, France, Latvia and China and was able to correctly diagnose in almost 9 out 10 cases.

It’s the first time a device was created that can distinguish between different diseases in a breath sample. Artificial intelligence plays a large role in that. Professor Haick, a nanotechnology expert, explained its workings this way to Smithsonian.com:

“We can teach the system that a breathprint could be associated with a particular disease,” said Haick. “It works in the same way we'd use dogs in order to detect specific compounds. We bring something to the nose of a dog, and the dog will transfer that chemical mixture to an electrical signature and provide it to the brain, and then memorize it in specific regions of the brain … This is exactly what we do. We let it smell a given disease but instead of a nose we use chemical sensors, and instead of the brain we use the algorithms. Then in the future, it can recognize the disease as a dog might recognize a scent.”

Haick said their AI “nose” can be used in other industries as well, like security or quality control.

If you’re looking for historical perspective, even ancient doctors as far back as the famous Greek physician Hippocrates (460-370 BC) were used to smelling the breaths of their patients to figure out their illnesses.

The scientists have continued testing the device on thousands more patients since the trial and hope to bring it to market soon. They think making this technology widespread could really impact the survival rates of patients with certain diseases by allowing for much earlier detection.

You can read the study here, in the American Chemical Society Nano journal.

Watch the interview with Professor Haick here:

Cover photo: Na-nose device. Credit: Technion-Israel Institute of Technology/Youtube.

Billionaire warlords: Why the future is medieval

The world's next superpower might just resurrect the Middle Ages.

Videos
  • Russia? China? No. The rising world superpower is the billionaire class. Our problem, says Sean McFate, is that we're still thinking in nation states.
  • Nation states have only existed for the last 300-400 years. Before that, wealthy groups – tribes, empires, aristocracies, etc – employed mercenaries to wage private wars.
  • As wealth inequality reaches combustion point, we could land back in the status quo ante of the Middle Ages. Who will our overlords be? Any or all of the 26 ultra-rich billionaires who own as much as the world's 3.8 billion poorest. What about Fortune 500, which is more powerful than most of the states in the world? Random billionaires, multinational corporations, and the extractive industry may buy armies and wage war on their own terms.
Keep reading Show less

Golden blood: the rarest blood in the world

We explore the history of blood types and how they are classified to find out what makes the Rh-null type important to science and dangerous for those who live with it.

Abid Katib/Getty Images
Surprising Science
  • Fewer than 50 people worldwide have 'golden blood' — or Rh-null.
  • Blood is considered Rh-null if it lacks all of the 61 possible antigens in the Rh system.
  • It's also very dangerous to live with this blood type, as so few people have it.
Keep reading Show less

5 of the worst keto diet side effects

The keto diet can help with weight loss, but at what cost?

Pixabay
Surprising Science
  • In addition to weight loss, there are a few well-known side effects of the keto diet, some of which can be unpleasant.
  • Some side effects of the keto diet are bound to occur, though others only happen when the diet is implemented poorly.
  • The keto diet doesn't have to lead to a host of negative side effects, but anyone considering undertaking the diet over the long term should be especially careful.
Keep reading Show less