Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Researchers Discover Excitonium - a Weird New Form of Matter

Researchers create a new form of matter, first theorized 50 years ago.

Credit: Peter Abbamonte, U. of I. Department of Physics and Frederick Seitz Materials Research Laboratory

Excitonium, a strange form of matter that was first theorized almost 50 years ago, has now been discovered by researchers. 


What is excitonium? It is a rather exotic condensate that exhibits macroscopic quantum phenomena like a superconductor or a superfluid. It consists of excitons, particles formed from an unlikely pairing of an escaped electron and the hole it leaves behind. The hole actually behaves like a positively-charged particle itself. It attracts an electron and together they form the composite particle known as the exciton.

In their experiments on non-doped crystals of the transition metal dichalcogenide titanium diselenide (1T-TiSe2), the researchers were able to observe the material and its precursor soft plasmon phase, called “the smoking gun” that proves excitonium’s existence. The precursor phase emerges as the material approaches its critical temperature.

The scientists reproduced their results 5 times on different cleaved crystals during the testing, adding more confidence to the study. 

What they achieved in particular is developing a new technique called momentum-resolved electron energy-loss spectroscopy (M-EELS) that is sensitive enough to distinguish the new material from Peierls phase, an unrelated substance that has the same symmetry. 

Professor of Physics Peter Abbamonte (center) works with graduate students Anshul Kogar (right) and Mindy Rak (left) in his laboratory at the Frederick Seitz Materials Research Laboratory. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.

The research was led by Peter Abbamonte from University of Illinois at Urbana-Champaign, working with the graduate students Anshul Kogar and Mindy Rak, and receiving input from colleagues at Illinois, University of California, Berkeley, and University of Amsterdam.

Abbamonte put their discovery in a historical context:

“This result is of cosmic significance,” said Abbamonte. “Ever since the term ‘excitonium’ was coined in the 1960s by Harvard theoretical physicist Bert Halperin, physicists have sought to demonstrate its existence. Theorists have debated whether it would be an insulator, a perfect conductor, or a superfluid—with some convincing arguments on all sides. Since the 1970s, many experimentalists have published evidence of the existence of excitonium, but their findings weren’t definitive proof and could equally have been explained by a conventional structural phase transition.”

An artist's depiction of the collective excitons in an excitonic solid. These excitations are propagating domain walls (yellow) in an ordered solid exciton background (blue). Credit: Peter Abbamonte, University of Illinois at Urbana-Champaign Department of Physics and Frederick Seitz Materials Research Laboratory.

The graduate student Kogar explained that discovering excitonium was not the original aim of the project but they'll take it.

While the discovery gives us a more detailed understanding of another mystery of quantum mechanics, the practical applications of excitonium are currently in a speculative stage.

You can read the team's paper here.

Hints of the 4th dimension have been detected by physicists

What would it be like to experience the 4th dimension?

Two different experiments show hints of a 4th spatial dimension. Credit: Zilberberg Group / ETH Zürich
Technology & Innovation

Physicists have understood at least theoretically, that there may be higher dimensions, besides our normal three. The first clue came in 1905 when Einstein developed his theory of special relativity. Of course, by dimensions we’re talking about length, width, and height. Generally speaking, when we talk about a fourth dimension, it’s considered space-time. But here, physicists mean a spatial dimension beyond the normal three, not a parallel universe, as such dimensions are mistaken for in popular sci-fi shows.

Keep reading Show less

Does conscious AI deserve rights?

If machines develop consciousness, or if we manage to give it to them, the human-robot dynamic will forever be different.

Videos
  • Does AI—and, more specifically, conscious AI—deserve moral rights? In this thought exploration, evolutionary biologist Richard Dawkins, ethics and tech professor Joanna Bryson, philosopher and cognitive scientist Susan Schneider, physicist Max Tegmark, philosopher Peter Singer, and bioethicist Glenn Cohen all weigh in on the question of AI rights.
  • Given the grave tragedy of slavery throughout human history, philosophers and technologists must answer this question ahead of technological development to avoid humanity creating a slave class of conscious beings.
  • One potential safeguard against that? Regulation. Once we define the context in which AI requires rights, the simplest solution may be to not build that thing.

A new hydrogel might be strong enough for knee replacements

Duke University researchers might have solved a half-century old problem.

Lee Jae-Sung of Korea Republic lies on the pitch holding his knee during the 2018 FIFA World Cup Russia group F match between Korea Republic and Germany at Kazan Arena on June 27, 2018 in Kazan, Russia.

Photo by Alexander Hassenstein/Getty Images
Technology & Innovation
  • Duke University researchers created a hydrogel that appears to be as strong and flexible as human cartilage.
  • The blend of three polymers provides enough flexibility and durability to mimic the knee.
  • The next step is to test this hydrogel in sheep; human use can take at least three years.
Keep reading Show less
Technology & Innovation

Predicting PTSD symptoms becomes possible with a new test

An algorithm may allow doctors to assess PTSD candidates for early intervention after traumatic ER visits.

Scroll down to load more…
Quantcast