Humans and Supernova-Born Neutron Stars Have Similar Structures, Discover Scientists

Physicists discover strikingly similar structures in human cells and neutron stars.

As atoms in our bodies were made in stars millions of years ago, it’s been common to propose that we are, in fact, made of stars. Now comes news of another mind-blowing cosmic relationship as physicists conclude that human cells and neutron stars share structural similarities, which look like multi-story parking garages.


Neutron stars are quite strange space objects. They come to life as a result of supernova explosions of massive stars and are incredibly dense. While they are the smallest stars, they can pack as much mass as two Suns into a star with the radius of just 10 kilometers. 

What the scientists found is that material inside human cell cytoplasms (fluid around a cell nucleus) looks like helices connecting stacks of evenly spaced sheets, dubbed “Terasaki ramps”.

Interestingly, computer simulations showed similar shapes, called “nuclear pasta” inside neutron stars.

Structures that look like stacked sheets connected by helical ramps were found in a human cell cytoplasm (left) and neutron stars (right).

This conclusion comes as a result of collaborative research between physicists in two different fields. The soft condensed-matter physicist Greg Huber from U.C. Santa Barbara and nuclear physicist Charles Horowitz from Indiana University worked together to  explore the shapes. 

“I called Chuck and asked if he was aware that we had seen these structures in cells and had come up with a model for them,” said Huber. “It was news to him, so I realized then that there could be some fruitful interaction.”

How similar are the shapes?

“They see a variety of shapes that we see in the cell,” Huber elaborated. “We see a tubular network; we see parallel sheets. We see sheets connected to each other through topological defects we call Terasaki ramps. So the parallels are pretty deep.”

What’s different are the physics involved.

“For neutron stars, the strong nuclear force and the electromagnetic force create what is fundamentally a quantum-mechanical problem,” Huber continued. “In the interior of cells, the forces that hold together membranes are fundamentally entropic and have to do with the minimization of the overall free energy of the system. At first glance, these couldn’t be more different.”

A neutron star is the densest object astronomers can observe directly, crushing half a million times Earth's mass into a sphere about 12 miles across, or similar in size to Manhattan Island, as shown in this illustration. Credit: NASA's Goddard Space Flight Center

What’s also different, of course, is the scale. The building blocks of the shapes in neutron stars are a million times larger than those in a human cell. Still, the shapes look similar.

“This means that there is some deep thing we don’t understand about how to model the nuclear system,” said Huber. “When you have a dense collection of protons and neutrons like you do on the surface of a neutron star, the strong nuclear force and the electromagnetic forces conspire to give you phases of matter you wouldn’t be able to predict if you had just looked at those forces operating on small collections of neutrons and protons.” 

Charles Horowitz, the study’s co-author, is also very intrigued, saying that:

“Seeing very similar shapes in such strikingly different systems suggests that the energy of a system may depend on its shape in a simple and universal way.”  

The discovery is just the beginning of exploring this unexpected topic .  

Read the research here, published in the journal Physical Review C.

To learn more about neutron stars, check out this helpful video:

--

A still from the film "We Became Fragments" by Luisa Conlon , Lacy Roberts and Hanna Miller, part of the Global Oneness Project library.

Photo: Luisa Conlon , Lacy Roberts and Hanna Miller / Global Oneness Project
Sponsored by Charles Koch Foundation
  • Stories are at the heart of learning, writes Cleary Vaughan-Lee, Executive Director for the Global Oneness Project. They have always challenged us to think beyond ourselves, expanding our experience and revealing deep truths.
  • Vaughan-Lee explains 6 ways that storytelling can foster empathy and deliver powerful learning experiences.
  • Global Oneness Project is a free library of stories—containing short documentaries, photo essays, and essays—that each contain a companion lesson plan and learning activities for students so they can expand their experience of the world.
Keep reading Show less

Four philosophers who realized they were completely wrong about things

Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

Sartre and Wittgenstein realize they were mistaken. (Getty Images)
Culture & Religion

Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

Keep reading Show less

Ashamed over my mental illness, I realized drawing might help me – and others – cope

Just before I turned 60, I discovered that sharing my story by drawing could be an effective way to both alleviate my symptoms and combat that stigma.

Photo by JJ Ying on Unsplash
Mind & Brain

I've lived much of my life with anxiety and depression, including the negative feelings – shame and self-doubt – that seduced me into believing the stigma around mental illness: that people knew I wasn't good enough; that they would avoid me because I was different or unstable; and that I had to find a way to make them like me.

Keep reading Show less

Sexual activity linked to higher cognitive function in older age

A joint study by two England universities explores the link between sex and cognitive function with some surprising differences in male and female outcomes in old age.

The results of this one-of-a-kind study suggest there are significant associations between sexual activity and number sequencing/word recall in men.
Image by Lightspring on Shutterstock
Mind & Brain
  • A joint study by the universities of Coventry and Oxford in England has linked sexual activity with higher cognitive abilities in older age.
  • The results of this study suggest there are significant associations between sexual activity and number sequencing/word recall in men. In women, however, there was a significant association between sexual activity in word recall alone - number sequencing was not impacted.
  • The differences in testosterone (the male sex hormone) and oxytocin (a predominantly female hormone) may factor into why the male cognitive level changes much more during sexual activity in older age.
Keep reading Show less
Scroll down to load more…