Harvard Scientists Create a Revolutionary Robot Octopus

A team of Harvard researchers 3D prints a fully autonomous octopus-like robot that runs on a chemical reaction.

Harvard Scientists Create a Revolutionary Robot Octopus

In the popular imagination, robots are metallic, often humanoid contraptions, stuffed with wires, circuit boards, batteries, and a latent desire to destroy us. But a research team from Harvard has introduced a robot that breaks all such stereotypes. Meet “Octobot”, the soft and cute, fully autonomous robot that looks like a small octopus.

The 2.5 inch Octobot has no rigid structures in its body, made of silicone rubber. The robot is flexible, and is not tethered to anything. And it demonstrates the potential of the new field of “soft robotics”.

Professor Robert Wood, one of the research leaders, who teaches at Harvard’s Wyss Institute for Biologically Inspired Engineering, described the team’s accomplishments this way:


“One longstanding vision for the field of soft robotics has been to create robots that are entirely soft, but the struggle has always been in replacing rigid components like batteries and electronic controls with analogous soft systems and then putting it all together. This research demonstrates that we can easily manufacture the key components of a simple, entirely soft robot, which lays the foundation for more complex designs.”


What are the applications of soft robots?

Potentially, soft robots can be useful in performing delicate tasks where a hard-bodied machine would fail or tasks where a metallic or plastic robot would present a danger to humans.

Michael Wehner, a post-doctoral fellow involved in the research, explained:

"[It could] either handle something that's very delicate, or move the body around to get into tight spaces in search and rescue, or maybe internal medicine. Something that's soft like an earthworm could crawl through the body better than something that's rigid, like a crab."

How was the Octobot created? 

Professor Jennifer A. Lewis, the co-leader of the research, elaborates:

“Through our hybrid assembly approach, we were able to 3-D print each of the functional components required within the soft robot body, including the fuel storage, power, and actuation, in a rapid manner. The octobot is a simple embodiment designed to demonstrate our integrated design and additive fabrication strategy for embedding autonomous functionality.”

The Octobot is pneumatic-based and powered by gas.

A chemical reaction inside the robot turns a small amount of liquid fuel (hydrogen peroxide) into a large volume of gas that flows into the octobot’s eight arms and inflates them. A "fluidic logic circuit" uses valves to regulate this operation.

Michael Wehner says this is the reason for their approach:

“Fuel sources for soft robots have always relied on some type of rigid components. The wonderful thing about hydrogen peroxide is that a simple reaction between the chemical and a catalyst — in this case platinum — allows us to replace rigid power sources.”

While the field of soft robotics is still emerging, other bio-inspired robot designs are on the way. Research teams are working on flying robot bees, crawling robots, and even cockroach-like robots.

You can read the research paper on the “Octobot” here, in Nature magazine.

Cover photo credit: Lori Sanders/Harvard University.

Were the ancient Egyptians black or white? Scientists now know

This is the first successful DNA sequencing on ancient Egyptian mummies, ever.

 

Ancient Egyptian Statues

Getty Images
Surprising Science

Egyptologists, writers, scholars, and others, have argued the race of the ancient Egyptians since at least the 1970's. Some today believe they were Sub-Saharan Africans. We can see this interpretation portrayed in Michael Jackson's 1991 music video for “Remember the Time" from his "Dangerous" album. The video, a 10-minute mini-film, includes performances by Eddie Murphy and Magic Johnson.

Keep reading Show less

Why professional soccer players choke during penalty kicks

A new study used functional near-infrared spectroscopy (fNIRS) to measure brain activity as inexperienced and experienced soccer players took penalty kicks.

PORTLAND, OREGON - MAY 09: Diego Valeri #8 of Portland Timbers reacts after missing a penalty kick in the second half against the Seattle Sounders at Providence Park on May 09, 2021 in Portland, Oregon.

Abbie Parr via Getty Images
Mind & Brain
  • The new study is the first to use in-the-field imaging technology to measure brain activity as people delivered penalty kicks.
  • Participants were asked to kick a total of 15 penalty shots under three different scenarios, each designed to be increasingly stressful.
  • Kickers who missed shots showed higher activity in brain areas that were irrelevant to kicking a soccer ball, suggesting they were overthinking.
Keep reading Show less

Changing a brain to save a life: how far should rehabilitation go?

What's the difference between brainwashing and rehabilitation?

Credit: Roy Rochlin via Getty Images
Mind & Brain
  • The book and movie, A Clockwork Orange, powerfully asks us to consider the murky lines between rehabilitation, brainwashing, and dehumanization.
  • There are a variety of ways, from hormonal treatment to surgical lobotomies, to force a person to be more law abiding, calm, or moral.
  • Is a world with less free will but also with less suffering one in which we would want to live?
Keep reading Show less
Surprising Science

How to fool a shark using magnets

A simple trick allowed marine biologists to prove a long-held suspicion.

Quantcast