How the Brain Keeps Time

Neuroscientists discover networks of neurons that stretch or compress their activity to control timing

Anne Trafton | MIT News Office


Timing is critical for playing a musical instrument, swinging a baseball bat, and many other activities. Neuroscientists have come up with several models of how the brain achieves its exquisite control over timing, the most prominent being that there is a centralized clock, or pacemaker, somewhere in the brain that keeps time for the entire brain.

However, a new study from MIT researchers provides evidence for an alternative timekeeping system that relies on the neurons responsible for producing a specific action. Depending on the time interval required, these neurons compress or stretch out the steps they take to generate the behavior at a specific time.

“What we found is that it’s a very active process. The brain is not passively waiting for a clock to reach a particular point,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

MIT postdoc Jing Wang and former postdoc Devika Narain are the lead authors of the paper, which appears in the Dec. 4 issue of Nature Neuroscience. Graduate student Eghbal Hosseini is also an author of the paper.

Flexible control

 One of the earliest models of timing control, known as the clock accumulator model, suggested that the brain has an internal clock or pacemaker that keeps time for the rest of the brain. A later variation of this model suggested that instead of using a central pacemaker, the brain measures time by tracking the synchronization between different brain wave frequencies.

Although these clock models are intuitively appealing, Jazayeri says, “they don’t match well with what the brain does.”

No one has found evidence for a centralized clock, and Jazayeri and others wondered if parts of the brain that control behaviors that require precise timing might perform the timing function themselves. “People now question why would the brain want to spend the time and energy to generate a clock when it’s not always needed. For certain behaviors you need to do timing, so perhaps the parts of the brain that subserve these functions can also do timing,” he says.

To explore this possibility, the researchers recorded neuron activity from three brain regions in animals as they performed a task at two different time intervals — 850 milliseconds or 1,500 milliseconds.

The researchers found a complicated pattern of neural activity during these intervals. Some neurons fired faster, some fired slower, and some that had been oscillating began to oscillate faster or slower. However, the researchers’ key discovery was that no matter the neurons’ response, the rate at which they adjusted their activity depended on the time interval required.

At any point in time, a collection of neurons is in a particular “neural state,” which changes over time as each individual neuron alters its activity in a different way. To execute a particular behavior, the entire system must reach a defined end state. The researchers found that the neurons always traveled the same trajectory from their initial state to this end state, no matter the interval. The only thing that changed was the rate at which the neurons traveled this trajectory.

When the interval required was longer, this trajectory was “stretched,” meaning the neurons took more time to evolve to the final state. When the interval was shorter, the trajectory was compressed.

“What we found is that the brain doesn’t change the trajectory when the interval changes, it just changes the speed with which it goes from the initial internal state to the final state,” Jazayeri says.

Dean Buonomano, a professor of behavioral neuroscience at the University of California at Los Angeles, says that the study “provides beautiful evidence that timing is a distributed process in the brain — that is, there is no single master clock.”

“This work also supports the notion that the brain does not tell time using a clock-like mechanism, but rather relies on the dynamics inherent to neural circuits, and that as these dynamics increase and decrease in speed, animals move more quickly or slowly,” adds Buonomano, who was not involved in the research.

Neural networks

The researchers focused their study on a brain loop that connects three regions: the dorsomedial frontal cortex, the caudate, and the thalamus. They found this distinctive neural pattern in the dorsomedial frontal cortex, which is involved in many cognitive processes, and the caudate, which is involved in motor control, inhibition, and some types of learning. However, in the thalamus, which relays motor and sensory signals, they found a different pattern: Instead of altering the speed of their trajectory, many of the neurons simply increased or decreased their firing rate, depending on the interval required.

Jazayeri says this finding is consistent with the possibility that the thalamus is instructing the cortex on how to adjust its activity to generate a certain interval.

The researchers also created a computer model to help them further understand this phenomenon. They began with a model of hundreds of neurons connected together in random ways, and then trained it to perform the same interval-producing task they had used to train animals, offering no guidance on how the model should perform the task.

They found that these neural networks ended up using the same strategy that they observed in the animal brain data. A key discovery was that this strategy only works if some of the neurons have nonlinear activity — that is, the strength of their output doesn’t constantly increase as their input increases. Instead, as they receive more input, their output increases at a slower rate.

Jazayeri now hopes to explore further how the brain generates the neural patterns seen during varying time intervals, and also how our expectations influence our ability to produce different intervals.

The research was funded by the Rubicon Grant from the Netherlands Scientific Organization, the National Institutes of Health, the Sloan Foundation, the Klingenstein Foundation, the Simons Foundation, the Center for Sensorimotor Neural Engineering, and the McGovern Institute.

--

Reprinted with permission of MIT News

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Why the ocean you know and love won’t exist in 50 years

Can sensitive coral reefs survive another human generation?

Videos
  • Coral reefs may not be able to survive another human decade because of the environmental stress we have placed on them, says author David Wallace-Wells. He posits that without meaningful changes to policies, the trend of them dying out, even in light of recent advances, will continue.
  • The World Wildlife Fund says that 60 percent of all vertebrate mammals have died since just 1970. On top of this, recent studies suggest that insect populations may have fallen by as much as 75 percent over the last few decades.
  • If it were not for our oceans, the planet would probably be already several degrees warmer than it is today due to the emissions we've expelled into the atmosphere.
Keep reading Show less

Why modern men are losing their testosterone

Research has shown that men today have less testosterone than they used to. What's happening?

Flickr user Tom Simpson
Sex & Relationships
  • Several studies have confirmed that testosterone counts in men are lower than what they used to be just a few decades ago.
  • While most men still have perfectly healthy testosterone levels, its reduction puts men at risk for many negative health outcomes.
  • The cause of this drop in testosterone isn't entirely clear, but evidence suggests that it is a multifaceted result of modern, industrialized life.
Keep reading Show less

Health care: Information tech must catch up to medical marvels

Michael Dowling, Northwell Health's CEO, believes we're entering the age of smart medicine.

Photo: Tom Werner / Getty Images
Sponsored by Northwell Health
  • The United States health care system has much room for improvement, and big tech may be laying the foundation for those improvements.
  • Technological progress in medicine is coming from two fronts: medical technology and information technology.
  • As information technology develops, patients will become active participants in their health care, and value-based care may become a reality.
Keep reading Show less