Distinctive brain pattern helps habits form

Want to work out more? Eat more healthily? Quit smoking? These neurons control the fate of your habits.

Study identifies neurons that fire at the beginning and end of a behavior as it becomes a habit.


Anne Trafton | MIT News Office 
February 8, 2018

Our daily lives include hundreds of routine habits. Brushing our teeth, driving to work, or putting away the dishes are just a few of the tasks that our brains have automated to the point that we hardly need to think about them.

Although we may think of each of these routines as a single task, they are usually made up of many smaller actions, such as picking up our toothbrush, squeezing toothpaste onto it, and then lifting the brush to our mouth. This process of grouping behaviors together into a single routine is known as “chunking,” but little is known about how the brain groups these behaviors together.

MIT neuroscientists have now found that certain neurons in the brain are responsible for marking the beginning and end of these chunked units of behavior. These neurons, located in a brain region highly involved in habit formation, fire at the outset of a learned routine, go quiet while it is carried out, then fire again once the routine has ended.

This task-bracketing appears to be important for initiating a routine and then notifying the brain once it is complete, says Ann Graybiel, an Institute Professor at MIT, a member of the McGovern Institute for Brain Research, and the senior author of the study.

Nuné Martiros, a recent MIT PhD recipient who is now a postdoc at Harvard University, is the lead author of the paper, which appears in the Feb. 8 issue of Current Biology. Alexandra Burgess, a recent MIT graduate and technical associate at the McGovern Institute, is also an author of the paper.

Routine activation

Graybiel has previously shown that a part of the brain called the striatum, which is found in the basal ganglia, plays a major role in habit formation. Several years ago, she and her group found that neuron firing patterns in the striatum change as animals learn a new habit, such as turning to the right or left in a maze upon hearing a certain tone.

When the animal is just starting to learn the maze, these neurons fire continuously throughout the task. However, as the animal becomes better at making the correct turn to receive a reward, the firing becomes clustered at the very beginning of the task and at the very end. Once these patterns form, it becomes extremely difficult to break the habit.

However, these previous studies did not rule out other explanations for the pattern, including the possibility that it might be related to the motor commands required for the maze-running behavior. In the new study, Martiros and Graybiel set out to determine whether this firing pattern could be conclusively linked with the chunking of habitual behavior.

The researchers trained rats to press two levers in a particular sequence, for example, 1-2-2 or 2-1-2. The rats had to figure out what the correct sequence was, and if they did, they received a chocolate milk reward. It took several weeks for them to learn the task, and as they became more accurate, the researchers saw the same beginning-and-end firing patterns develop in the striatum that they had seen in their previous habit studies.

Because each rat learned a different sequence, the researchers could rule out the possibility that the patterns correspond to the motor input required to preform a particular series of movements. This offers strong evidence that the firing pattern corresponds specifically to the initiation and termination of a learned routine, the researchers say.

“I think this more or less proves that the development of bracketing patterns serves to package up a behavior that the brain — and the animals — consider valuable and worth keeping in their repertoire. It really is a high-level signal that helps to release that habit, and we think the end signal says the routine has been done,” Graybiel says.

Distinctive patterns

The researchers also discovered a distinct pattern in a set of inhibitory neurons in the striatum. Activity in these neurons, known as interneurons, displayed a strong inverse relationship with the activity of the excitatory neurons that produce the bracketing pattern.

“The interneurons were activated during the time when the rats were in the middle of performing the learned sequence, and could possibly be preventing the principal neurons from initiating another routine until the current one was finished. The discovery of this opposite activity by the interneurons also gets us one step closer to understanding how brain circuits can actually produce this pattern of activity,” Martiros says.

Graybiel’s lab is now investigating further how the interaction between these two groups of neurons helps to encode habitual behavior in the striatum.

The research was funded by the National Institutes of Health/National Institute of Mental Health, the Office of Naval Research, and a McGovern Institute Mark Gorenberg Fellowship.

--

Reprinted with permission of MIT News

Related Articles

Why birds fly south for the winter—and more about bird migration

What do we see from watching birds move across the country?

E. Fleischer
Surprising Science
  • A total of eight billion birds migrate across the U.S. in the fall.
  • The birds who migrate to the tropics fair better than the birds who winter in the U.S.
  • Conservationists can arguably use these numbers to encourage the development of better habitats in the U.S., especially if temperatures begin to vary in the south.


The migration of birds — and we didn't even used to know that birds migrated; we assumed they hibernated; the modern understanding of bird migration was established when a white stork landed in a German village with an arrow from Central Africa through its neck in 1822 — draws us in the direction of having an understanding of the world. A bird is here and then travels somewhere else. Where does it go? It's a variation on the poetic refrain from The Catcher in the Rye. Where do the ducks go? How many are out there? What might it encounter along the way?

While there is a yearly bird count conducted every Christmas by amateur bird watchers across the country done in conjunction with The Audubon Society, the Cornell Lab of Ornithology recently released the results of a study that actually go some way towards answering heretofore abstract questions: every fall, as per cloud computing and 143 weather radar stations, four billion birds migrate into the United States from Canada and four billion more head south to the tropics.

In other words: the birds who went three to four times further than the birds staying in the U.S. faired better than the birds who stayed in the U.S. Why?

Part of the answer could be very well be what you might hear from a conservationist — only with numbers to back it up: the U.S. isn't built for birds. As Ken Rosenberg, the other co-author of the study, notes: "Birds wintering in the U.S. may have more habitat disturbances and more buildings to crash into, and they might not be adapted for that."

The other option is that birds lay more offspring in the U.S. than those who fly south for the winter.

What does observing eight billion birds mean in practice? To give myself a counterpoint to those numbers, I drove out to the Joppa Flats Education Center in Northern Massachusetts. The Center is a building that sits at the entrance to the Parker River National Wildlife Refuge and overlooks the Merrimack River, which is what I climbed the stairs up to the observation deck to see.

Once there, I paused. I took a breath. I listened. I looked out into the distance. Tiny flecks Of Bonaparte's Gulls drew small white lines across the length of the river and the wave of the grass toward a nearby city. What appeared to be flecks of double-crested cormorants made their way to the sea. A telescope downstairs enabled me to watch small gull-like birds make their way along the edges of the river, quietly pecking away at food just beneath the surface of the water. This was the experience of watching maybe half a dozen birds over fifteen-to-twenty minutes, which only served to drive home the scale of birds studied.

How does alcohol affect your brain?

Explore how alcohol affects your brain, from the first sip at the bar to life-long drinking habits.

(Photo by Angie Garrett/Wikimedia Commons)
Mind & Brain
  • Alcohol is the world's most popular drug and has been a part of human culture for at least 9,000 years.
  • Alcohol's effects on the brain range from temporarily limiting mental activity to sustained brain damage, depending on levels consumed and frequency of use.
  • Understanding how alcohol affects your brain can help you determine what drinking habits are best for you.
Keep reading Show less

Scientists sequence the genome of this threatened species

If you want to know what makes a Canadian lynx a Canadian lynx a team of DNA sequencers has figured that out.

Surprising Science
  • A team at UMass Amherst recently sequenced the genome of the Canadian lynx.
  • It's part of a project intending to sequence the genome of every vertebrate in the world.
  • Conservationists interested in the Canadian lynx have a new tool to work with.

If you want to know what makes a Canadian lynx a Canadian lynx, I can now—as of this month—point you directly to the DNA of a Canadian lynx, and say, "That's what makes a lynx a lynx." The genome was sequenced by a team at UMass Amherst, and it's one of 15 animals whose genomes have been sequenced by the Vertebrate Genomes Project, whose stated goal is to sequence the genome of all 66,000 vertebrate species in the world.

Sequencing the genome of a particular species of an animal is important in terms of preserving genetic diversity. Future generations don't necessarily have to worry about our memory of the Canadian Lynx warping the way hearsay warped perception a long time ago.

elephant by Guillaume le Clerc

Artwork: Guillaume le Clerc / Wikimedia Commons

13th-century fantastical depiction of an elephant.

It is easy to see how one can look at 66,000 genomic sequences stored away as being the analogous equivalent of the Svalbard Global Seed Vault. It is a potential tool for future conservationists.

But what are the practicalities of sequencing the genome of a lynx beyond engaging with broad bioethical questions? As the animal's habitat shrinks and Earth warms, the Canadian lynx is demonstrating less genetic diversity. Cross-breeding with bobcats in some portions of the lynx's habitat also represents a challenge to the lynx's genetic makeup. The two themselves are also linked: warming climates could drive Canadian lynxes to cross-breed with bobcats.

John Organ, chief of the U.S. Geological Survey's Cooperative Fish and Wildlife units, said to MassLive that the results of the sequencing "can help us look at land conservation strategies to help maintain lynx on the landscape."

What does DNA have to do with land conservation strategies? Consider the fact that the food found in a landscape, the toxins found in a landscape, or the exposure to drugs can have an impact on genetic activity. That potential change can be transmitted down the generative line. If you know exactly how a lynx's DNA is impacted by something, then the environment they occupy can be fine-tuned to meet the needs of the lynx and any other creature that happens to inhabit that particular portion of the earth.

Given that the Trump administration is considering withdrawing protection for the Canadian lynx, a move that caught scientists by surprise, it is worth having as much information on hand as possible for those who have an interest in preserving the health of this creature—all the way down to the building blocks of a lynx's life.