Big ideas.
Once a week.
Subscribe to our weekly newsletter.
This is your brain on political arguments
Debating is cognitively taxing but also important for the health of a democracy—provided it's face-to-face.

Antifa and counter protestors to a far-right rally argue during the Unite the Right 2 Rally in Washington, DC, on August 12, 2018.
- New research at Yale identifies the brain regions that are affected when you're in disagreeable conversations.
- Talking with someone you agree with harmonizes brain regions and is less energetically taxing.
- The research involves face-to-face dialogues, not conversations on social media.
You probably know the feeling: a rush of heat that assaults your entire body; your fingertips and forehead suffering fiery consequences of conflict; restrictions around your chest and throat; quickened breath, as if your lungs can no longer draw in the required oxygen; ears on alert, biding time for a break in your opponent's rhetoric to let loose the torrent of thoughts crowding your brain.
Of course, not everyone is an opponent. You likely know the opposite as well: the cool excitement of agreeableness, when the words in your head are returned to you from another being as in a mirror; unconscious head shaking as your sense of righteousness is validated; the warm exuberance of easy dialogue with a fellow tribe member.
In a digital age in which physical contact seems foreign and long past, we might have forgotten what it's like to agree—or debate—with someone in person. Pandemics are temporary, while societies are—well, nothing is forever, but we've outlived diseases before. According to new research from Yale University, published in Frontiers in Human Neuroscience, disagreeing with someone takes up a lot of brain real estate, while finding a compatriot is a much less cognitively taxing endeavor.
For this study, researchers gathered 38 adults to ask their feelings on contentious topics like same-sex marriage and cannabis legalization. They then matched each volunteer with people who either agreed or disagreed. Every subject had their brain scanned with functional near-infrared spectroscopy during these face-to-face discussions, during which time they were given a total of 90 seconds to discuss a topic in 15-second increments.
There are two kinds of identity politics. One is good. The other, very bad. | Jonathan Haidt
Unsurprisingly, harmonious synchronization of brain states occurred when volunteers agreed, similar to group flow—the coordination of brain waves that hip-hop and jazz musicians (among others) experience when performing together. Coordination exceeds the social, into the neurological. As the team writes, "talking during agreement was characterized by increased activity in a social and attention network including right supramarginal gyrus, bilateral frontal eye-fields, and left frontopolar regions."
This contrasts with argumentative behavior, in which "the frontoparietal system including bilateral dorsolateral prefrontal cortex, left supramarginal gyrus, angular gyrus, and superior temporal gyrus showed increased activity while talking during disagreement."
Senior author Joy Hirsch notes that our brain is essentially a social processing network. The evolutionary success of humans is thanks to our ability to coordinate. Dissonance is exhausting. Overall, she says, "it just takes a lot more brain real estate to disagree than to agree," comparing arguments to a symphony orchestra playing different music.
As the team notes, language, visual, and social systems are all dynamically intertwined inside of our brain. For most of history, yelling at one another in comment sections was impossible. Arguments had to occur the old-fashioned way: while staring at the source of your discontent.
People of the "left-wing" side yell at a Trump supporter during a "Demand Free Speech" rally on Freedom Plaza on July 6, 2019 in Washington, DC.
Credit: Stephanie Keith/Getty Images
Leading us to an interesting question: do the same brain regions fire when you're screaming with your fingers on your Facebook feed? Given the lack of visual feedback from the person on the other side of the argument, likely not—as it is unlikely that many people would argue in the same manner when face-to-face with a person on the other side of a debate. We are generally more civil in real life than on a screen.
The researchers point out that seeing faces causes complex neurological reactions that must be interpreted in real-time. For example, gazing into someone's eyes requires higher-order processing that must be dealt with during the moment. Your brain coordinates to make sense of the words being spoken and pantomimes being witnessed. This combination of verbal and visual processes are "generally associated with high-level cognitive and linguistic functions."
While arguing is more exhausting, it also sharpens your senses—when a person is present, at least. Debating is a healthy function of society. Arguments force you to consider other viewpoints and potentially come to different conclusions. As with physical exercise, which makes you stronger even though it's energetically taxing, disagreement propels societies forward.
In this study, every participant was forced to listen to the other person. As this research was focused on live interactions, it adds to the literature of cognitive processing during live interactions and offers insights into the cognitive tax of anger. Even anger is a net positive when it forces both sides to think through their thoughts and feelings on a matter. As social animals, we need that tension in our lives in order to grow. Yelling into the void of a comments section? Not so helpful.--
Stay in touch with Derek on Twitter and Facebook. His most recent book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."
- 8 logical fallacies that are hard to spot - Big Think ›
- “My-side bias” makes it difficult for us to see the logic in arguments ... ›
- Decisions are largely emotional, not logical - Big Think ›
How tiny bioelectronic implants may someday replace pharmaceutical drugs
Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.
Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.
- Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
- Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
- Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
The nervous system’s ancient reflexes
<p>You accidentally place your hand on a hot stove. Almost instantaneously, your hand withdraws.</p><p>What triggered your hand to move? The answer is <em>not</em> that you consciously decided the stove was hot and you should move your hand. Rather, it was a reflex: Skin receptors on your hand sent nerve impulses to the spinal cord, which ultimately sent back motor neurons that caused your hand to move away. This all occurred before your "conscious brain" realized what happened.</p><p>Similarly, the nervous system has reflexes that protect individual cells in the body.</p><p>"The nervous system evolved because we need to respond to stimuli in the environment," said Dr. Tracey. "Neural signals don't come from the brain down first. Instead, when something happens in the environment, our peripheral nervous system senses it and sends a signal to the central nervous system, which comprises the brain and spinal cord. And then the nervous system responds to correct the problem."</p><p>So, what if scientists could "hack" into the nervous system, manipulating the electrical activity in the nervous system to control molecular processes and produce desirable outcomes? That's the chief goal of bioelectronic medicine.</p><p>"There are billions of neurons in the body that interact with almost every cell in the body, and at each of those nerve endings, molecular signals control molecular mechanisms that can be defined and mapped, and potentially put under control," Dr. Tracey said in a <a href="https://www.youtube.com/watch?v=AJH9KsMKi5M" target="_blank">TED Talk</a>.</p><p>"Many of these mechanisms are also involved in important diseases, like cancer, Alzheimer's, diabetes, hypertension and shock. It's very plausible that finding neural signals to control those mechanisms will hold promises for devices replacing some of today's medication for those diseases."</p><p>How can scientists hack the nervous system? For years, researchers in the field of bioelectronic medicine have zeroed in on the longest cranial nerve in the body: the vagus nerve.</p>The vagus nerve
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYyOTM5OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0NTIwNzk0NX0.UCy-3UNpomb3DQZMhyOw_SQG4ThwACXW_rMnc9mLAe8/img.jpg?width=1245&coordinates=0%2C0%2C0%2C0&height=700" id="09add" class="rm-shortcode" data-rm-shortcode-id="f38dbfbbfe470ad85a3b023dd5083557" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Electrical signals, seen here in a synapse, travel along the vagus nerve to trigger an inflammatory response.
Credit: Adobe Stock via solvod
<p>The vagus nerve ("vagus" meaning "wandering" in Latin) comprises two nerve branches that stretch from the brainstem down to the chest and abdomen, where nerve fibers connect to organs. Electrical signals constantly travel up and down the vagus nerve, facilitating communication between the brain and other parts of the body.</p><p>One aspect of this back-and-forth communication is inflammation. When the immune system detects injury or attack, it automatically triggers an inflammatory response, which helps heal injuries and fend off invaders. But when not deployed properly, inflammation can become excessive, exacerbating the original problem and potentially contributing to diseases.</p><p>In 2002, Dr. Tracey and his colleagues discovered that the nervous system plays a key role in monitoring and modifying inflammation. This occurs through a process called the <a href="https://www.nature.com/articles/nature01321" target="_blank" rel="noopener noreferrer">inflammatory reflex</a>. In simple terms, it works like this: When the nervous system detects inflammatory stimuli, it reflexively (and subconsciously) deploys electrical signals through the vagus nerve that trigger anti-inflammatory molecular processes.</p><p>In rodent experiments, Dr. Tracey and his colleagues observed that electrical signals traveling through the vagus nerve control TNF, a protein that, in excess, causes inflammation. These electrical signals travel through the vagus nerve to the spleen. There, electrical signals are converted to chemical signals, triggering a molecular process that ultimately makes TNF, which exacerbates conditions like rheumatoid arthritis.</p><p>The incredible chain reaction of the inflammatory reflex was observed by Dr. Tracey and his colleagues in greater detail through rodent experiments. When inflammatory stimuli are detected, the nervous system sends electrical signals that travel through the vagus nerve to the spleen. There, the electrical signals are converted to chemical signals, which trigger the spleen to create a white blood cell called a T cell, which then creates a neurotransmitter called acetylcholine. The acetylcholine interacts with macrophages, which are a specific type of white blood cell that creates TNF, a protein that, in excess, causes inflammation. At that point, the acetylcholine triggers the macrophages to stop overproducing TNF – or inflammation.</p><p>Experiments showed that when a specific part of the body is inflamed, specific fibers within the vagus nerve start firing. Dr. Tracey and his colleagues were able to map these relationships. More importantly, they were able to stimulate specific parts of the vagus nerve to "shut off" inflammation.</p><p>What's more, clinical trials show that vagus nerve stimulation not only "shuts off" inflammation, but also triggers the production of cells that promote healing.</p><p>"In animal experiments, we understand how this works," Dr. Tracey said. "And now we have clinical trials showing that the human response is what's predicted by the lab experiments. Many scientific thresholds have been crossed in the clinic and the lab. We're literally at the point of regulatory steps and stages, and then marketing and distribution before this idea takes off."<br></p>The future of bioelectronic medicine
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYxMDYxMy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjQwOTExNH0.uBY1TnEs_kv9Dal7zmA_i9L7T0wnIuf9gGtdRXcNNxo/img.jpg?width=980" id="8b5b2" class="rm-shortcode" data-rm-shortcode-id="c005e615e5f23c2817483862354d2cc4" data-rm-shortcode-name="rebelmouse-image" data-width="2000" data-height="1125" />Vagus nerve stimulation can already treat Crohn's disease and other inflammatory diseases. In the future, it may also be used to treat cancer, diabetes, and depression.
Credit: Adobe Stock via Maridav
<p>Vagus nerve stimulation is currently awaiting approval by the US Food and Drug Administration, but so far, it's proven safe and effective in clinical trials on humans. Dr. Tracey said vagus nerve stimulation could become a common treatment for a wide range of diseases, including cancer, Alzheimer's, diabetes, hypertension, shock, depression and diabetes.</p><p>"To the extent that inflammation is the problem in the disease, then stopping inflammation or suppressing the inflammation with vagus nerve stimulation or bioelectronic approaches will be beneficial and therapeutic," he said.</p><p>Receiving vagus nerve stimulation would require having an electronic device, about the size of lima bean, surgically implanted in your neck during a 30-minute procedure. A couple of weeks later, you'd visit, say, your rheumatologist, who would activate the device and determine the right dosage. The stimulation would take a few minutes each day, and it'd likely be unnoticeable.</p><p>But the most revolutionary aspect of bioelectronic medicine, according to Dr. Tracey, is that approaches like vagus nerve stimulation wouldn't come with harmful and potentially deadly side effects, as many pharmaceutical drugs currently do.</p><p>"A device on a nerve is not going to have systemic side effects on the body like taking a steroid does," Dr. Tracey said. "It's a powerful concept that, frankly, scientists are quite accepting of—it's actually quite amazing. But the idea of adopting this into practice is going to take another 10 or 20 years, because it's hard for physicians, who've spent their lives writing prescriptions for pills or injections, that a computer chip can replace the drug."</p><p>But patients could also play a role in advancing bioelectronic medicine.</p><p>"There's a huge demand in this patient cohort for something better than they're taking now," Dr. Tracey said. "Patients don't want to take a drug with a black-box warning, costs $100,000 a year and works half the time."</p><p>Michael Dowling, president and CEO of Northwell Health, elaborated:</p><p>"Why would patients pursue a drug regimen when they could opt for a few electronic pulses? Is it possible that treatments like this, pulses through electronic devices, could replace some drugs in the coming years as preferred treatments? Tracey believes it is, and that is perhaps why the pharmaceutical industry closely follows his work."</p><p>Over the long term, bioelectronic approaches are unlikely to completely replace pharmaceutical drugs, but they could replace many, or at least be used as supplemental treatments.</p><p>Dr. Tracey is optimistic about the future of the field.</p><p>"It's going to spawn a huge new industry that will rival the pharmaceutical industry in the next 50 years," he said. "This is no longer just a startup industry. [...] It's going to be very interesting to see the explosive growth that's going to occur."</p>Just how cold was the Ice Age? New study finds the temperature
Researchers figure out the average temperatures of the last ice age on Earth.
Icebergs.
- A new study analyzes fossil data to find the average temperatures during the last Ice Age.
- This period of time, about 20,000 years ago, had the average temperature of about 46 degrees Fahrenheit (7.8 C).
- The study has implications for understanding climate change.
Surface air temperatures during the last ice age.
Credit: Jessica Tierney, University of Arizona
Best. Science. Fiction. Show. Ever.
"The Expanse" is the best vision I've ever seen of a space-faring future that may be just a few generations away.
- Want three reasons why that headline is justified? Characters and acting, universe building, and science.
- For those who don't know, "The Expanse" is a series that's run on SyFy and Amazon Prime set about 200 years in the future in a mostly settled solar system with three waring factions: Earth, Mars, and Belters.
- No other show I know of manages to use real science so adeptly in the service of its story and its grand universe building.
Credit: "The Expanse" / Syfy
<p>Now, I get it if you don't agree with me. I love "Star Trek" and I thought "Battlestar Galactica" (the new one) was amazing and I do adore "The Mandalorian". They are all fun and important and worth watching and thinking about. And maybe you love them more than anything else. But when you sum up the acting, the universe building, and the use of real science where it matters, I think nothing can beat "The Expanse". And with a <a href="https://www.rottentomatoes.com/tv/the_expanse" target="_blank">Rotten Tomato</a> average rating of 93%, I'm clearly not the only one who feels this way.</p><p>Best.</p><p>Show.</p><p>Ever. </p>How exercise changes your brain biology and protects your mental health
Contrary to what some might think, the brain is a very plastic organ.
As with many other physicians, recommending physical activity to patients was just a doctor chore for me – until a few years ago. That was because I myself was not very active.
Here's a 10-step plan to save our oceans
By 2050, there may be more plastic than fish in the sea.
