The return of the 'stoned ape' theory

A long-ridiculed theory about humankind's early leap of consciousness is revived.

  • Terence McKenna first proposed psychedelic mushrooms as the trigger for our rapid cognitive evolution.
  • McKenna's theory was called the "Stoned Ape Hypothesis."
  • The hypothesis is being revisited as a possible answer to a vexxing evolutionary riddle.

There seems to have been a profound difference in cognitive abilities between early Homo sapiens and our immediate predecessor, Homo erectus. Sure, erectus stood upright — a big, um, step forward — but with the emergence of Homo sapiens, we see traces of art, pictography, and tool usage, and we believe humankind made its first forays into language.

In the early 1990s, psychedelic advocate and ethnobotanist Terence McKenna published his book Food of the Gods in which he surmised that homo sapiens' cognitive leap forward was due to their discovery of magic mushrooms. The scientific community never took McKenna's theory very seriously, considering it mostly trippy speculation — these days, his ideas have largely been relegated to the spacier corners of Reddit. Now, however, the idea has acquired a new advocate, psilocybin mycologist Paul Stamets, who's suggesting McKenna was right all along.

The stoned ape

Terence McKenna. Image source: Jon Hanna/Wikimedia

In McKenna's Stoned Ape hypothesis," he posited that as humans began to migrate to new areas, at some point they came upon psychedelic mushrooms growing in cow droppings, as is their wont, and then ate them. After ingesting them, and more specifically the psilocybin they contained, their brains kicked into overdrive, acquiring new information-processing capabilities, and a mind-blowing expansion of our imaginations in the bargain. Many modern users of psychedelics claim the world never looks the same again after such an experience. As McKenna put it, "Homo sapiens ate our way to a higher consciousness," and, "It was at this time that religious ritual, calendar making, and natural magic came into their own."

The return of the stoned ape

Image source: Chris Moody / Shutterstock / Big Think

Regarding this theory, Stamets presented "Psilocybin Mushrooms and the Mycology of Consciousness" at Psychedelic Science 2017. In his talk he sought to rehabilitate McKenna's hypothesis as a totally plausible answer to a longstanding evolutionary riddle. "What is really important for you to understand," he said, "is that there was a sudden doubling of the human brain 200,000 years ago. From an evolutionary point of view, that's an extraordinary expansion. And there is no explanation for this sudden increase in the human brain."

Why not mushrooms? Stamets portrayed a group of early humans making their way through the savannah and happening across "the largest psilocybin mushroom in the world growing bodaciously out of dung of the animals." It needn't have been unusually large to have its effect, of course. In any event, he invited the crowd to suspend their disbelief and admit that McKenna's idea constitutes a "very, very plausible hypothesis for the sudden evolution of Homo sapiens from our primate relatives," even if it's an unprovable one.

The audience's response was reportedly enthusiastic, though it's fair to note that these were people attending a conference on psychedelic science, and thus pre-disposed toward such chemicals' importance.

Just tripping?

Image source: Apple2499 / Shutterstock

Certainly, there's general agreement on the mystery Stamets cited, if not so much on timing details. And consciousness, the "hard problem" even in its modern form, is an area rife with unanswered questions. What is consciousness, anyway? Is it a simple enough thing that it could have a single root cause as McKenna and Stamets say? Many experts suspect our brains gained new capabilities as the result of early community ties and the requirements of social interaction, but when?

Anthropologist Ian Tattersall tells Inverse that the where seems obvious enough: Africa, "For it is in this continent that we find the first glimmerings of 'modern behaviors'. . . But the moment of transformation still eludes us and may well do so almost indefinitely."

There are other researchers who've studied early humanity's use of drug plants but who are skeptical of the stoned ape notiion. Elisa Guerra-Doce, an expert in the field, considers the idea too simplistic, potentially a reduction of a complex evolutionary process into a single "aha" — or maybe "oh, wow" — moment. She's also troubled by there being little evidence of such a pivotal moment, or of drug use at all, so early in the archeological record.

Amanda Feilding of the psychedelic think tank Beckley Foundation says, however, that the stoned ape theory is at the very least a valid reminder that humans have always been drawn to and fascinated by mind-altering substances: "The imagery that comes with the psychedelic experience is a theme that runs through ancient art, so I'm sure that psychedelic experience and other techniques, like dancing and music, were used by our early ancestors to enhance consciousness, which then facilitated spirituality, art, and medicine."

Just how early our love affair with hallucinogenic states began may have something to say about the plausibility of McKenna's hypothesis, but, alas, we don't know when that would have been. And, as the saying about the 1960s goes, even if any of these people were still around to ask, anyone who was really there wouldn't be able to remember.

'Upstreamism': Your zip code affects your health as much as genetics

Upstreamism advocate Rishi Manchanda calls us to understand health not as a "personal responsibility" but a "common good."

Sponsored by Northwell Health
  • Upstreamism tasks health care professionals to combat unhealthy social and cultural influences that exist outside — or upstream — of medical facilities.
  • Patients from low-income neighborhoods are most at risk of negative health impacts.
  • Thankfully, health care professionals are not alone. Upstreamism is increasingly part of our cultural consciousness.
Keep reading Show less
Videos
  • A huge segment of America's population — the Baby Boom generation — is aging and will live longer than any American generation in history.
  • The story we read about in the news? Their drain on social services like Social Security and Medicare.
  • But increased longevity is a cause for celebration, says Ashton Applewhite, not doom and gloom.


Dubai to build the world’s largest concentrated solar power plant

Can you make solar power work when the sun goes down? You can, and Dubai is about to run a city that way.

Photo credit: MARWAN NAAMANI / AFP / Getty Images
Technology & Innovation
  • A new concentrated solar plant is under construction in Dubai.
  • When it opens next year, it will be the largest plant of its kind on Earth.
  • Concentrated solar power solves the problem of how to store electricity in ways that solar pannels cannot.
Keep reading Show less

Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. Think a dialysis machine for the mind. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.