Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Autistic people's nerve cells differ before birth, new study finds
"Such studies will lead to a better understanding of brain development in both autistic and typical individuals."

- Autism spectrum disorder (ASD) is a neurodevelopmental condition that can cause significant social, communication, and behavioral challenges.
- Although a diagnosis of autism can typically be made around the age of 2, the average age for diagnosis in the United States is after 4 years old.
- A new study shows that the atypical development of autism in human brain cells starts at the very earliest stages of brain organization, which can happen as early as the third week of pregnancy.
Autism spectrum disorder (ASD) is a neurodevelopmental condition that can cause significant social, communication, and behavioral challenges. According to the CDC, a diagnosis of autism now includes several conditions that used to be diagnosed separately (autistic disorder, pervasive developmental disorder, and Asberger syndrome). These conditions are now wrapped into the ASD diagnosis.
The American Academy of Pediatrics recommends that all children be screened for autism at 18 months and at 24 months, yet only about half of primary care practitioners in the United States screen for autism. Although a diagnosis of autism can typically be made around the age of 2, the average age for diagnosis in the United States is more than 4 years old.
Nerve cells in the autistic brain differ before birth, new research finds
A new study shows that the atypical development of autism in human brain cells starts at the very earliest stages of brain organization, which can happen as early as the third week of pregnancy.
The study was performed by scientists at King's College London and Cambridge University.
The study used induced pluripotent stem cells to recreate the development of each sample in the womb.
The researchers isolated hair samples from nine autistic people and six typical people. By treating the cells with an array of growth factors, the scientists were able to drive the hair cells to become nerve cells (or neurons), much like those found in either the cortex or the midbrain region.
These induced pluripotent stem cells (referred to as IPSCs) retain the genetic identity of the person from which they came, and the cells restart their development as it would have happened in the womb. This provides a look into that person's brain development.
At various stages, the researchers examined the developing cells' appearance and sequenced their RNA to see which genes the cells were expressing. On day 9 of the study, developing neurons from typical people formed "neural rosettes" (an intricate, dandelion-like shape indicative of typically developing neurons). Cells from autistic people formed smaller rosettes (or did not form any rosettes at all), and key developmental genes were expressed at lower levels.
Days 21 and 35 of the study showed cells from typical and autistic people differed significantly in a number of ways, proving that the makeup of neurons in the cortex differs in the autistic and typically developing brains.
John Krystal, Ph.D., Editor-in-Chief of Biological Psychiatry, explains: "The emergence of differences associated with autism in these nerve cells shows that these differences arise very early in life."
Along with the variations, there were some things that proved similar.
Additionally, cells directed to develop as midbrain neurons (a brain region that's not implicated in autism dysfunction) showed only negligible differences between typical and autistic individuals. The similarities are just as important as the differences, as they mark how the autistic brain and typical brain develop uniquely from the earliest stages of growth.
"The use of iPSCs allows us to examine more precisely the differences in cell fates and gene pathways that occur in neural cells from autistic and typical individuals. These findings will hopefully contribute to our understanding of why there is such diversity in brain development," said Dr. Dr. Deepak Srivastava, who supervised the study.
The intention of this study is not to find ways to "cure" autism, but to better understand the key genetic components that contribute to it.
Simon Baron-Cohen, Ph.D., Director of the Autism Research Centre at Cambridge and the study's co-lead, added that "some people may be worried that basic research into differences in the autistic and typical brain prenatally may be intended to 'prevent,' 'eradicate,' or 'cure' autism. This is not our motivation, and we are outspoken in our values in standing up against eugenics and in valuing neurodiversity. Such studies will lead to a better understanding of brain development in both autistic and typical individuals."
- 7 things everyone should know about autism - Big Think ›
- Study: autistic brains develop differently before birth - Big Think ›
- Study may explain how infections reduce autism symptoms | MIT ... ›
‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create
How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.
- A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
- It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
- While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Tribalism and discrimination
<p>One question the "Genetic Pressure" series explores: What would tribalism and discrimination look like in a world with designer babies? As designer babies grow up, they could be noticeably different from other people, potentially being smarter, more attractive and healthier. This could breed resentment between the groups—as it does in the series.</p><p>"[Designer babies] slowly find that 'everyone else,' and even their own parents, becomes less and less tolerable," author Eugene Clark told Big Think. "Meanwhile, everyone else slowly feels threatened by the designer babies."</p><p>For example, one character in the series who was born a designer baby faces discrimination and harassment from "normal people"—they call her "soulless" and say she was "made in a factory," a "consumer product." </p><p>Would such divisions emerge in the real world? The answer may depend on who's able to afford designer baby services. If it's only the ultra-wealthy, then it's easy to imagine how being a designer baby could be seen by society as a kind of hyper-privilege, which designer babies would have to reckon with. </p><p>Even if people from all socioeconomic backgrounds can someday afford designer babies, people born designer babies may struggle with tough existential questions: Can they ever take full credit for things they achieve, or were they born with an unfair advantage? To what extent should they spend their lives helping the less fortunate? </p>Sexuality dilemmas
<p>Sexuality presents another set of thorny questions. If a designer baby industry someday allows people to optimize humans for attractiveness, designer babies could grow up to find themselves surrounded by ultra-attractive people. That may not sound like a big problem.</p><p>But consider that, if designer babies someday become the standard way to have children, there'd necessarily be a years-long gap in which only some people are having designer babies. Meanwhile, the rest of society would be having children the old-fashioned way. So, in terms of attractiveness, society could see increasingly apparent disparities in physical appearances between the two groups. "Normal people" could begin to seem increasingly ugly.</p><p>But ultra-attractive people who were born designer babies could face problems, too. One could be the loss of body image. </p><p>When designer babies grow up in the "Genetic Pressure" series, men look like all the other men, and women look like all the other women. This homogeneity of physical appearance occurs because parents of designer babies start following trends, all choosing similar traits for their children: tall, athletic build, olive skin, etc. </p><p>Sure, facial traits remain relatively unique, but everyone's more or less equally attractive. And this causes strange changes to sexual preferences.</p><p>"In a society of sexual equals, they start looking for other differentiators," he said, noting that violet-colored eyes become a rare trait that genetically engineered humans find especially attractive in the series.</p><p>But what about sexual relationships between genetically engineered humans and "normal" people? In the "Genetic Pressure" series, many "normal" people want to have kids with (or at least have sex with) genetically engineered humans. But a minority of engineered humans oppose breeding with "normal" people, and this leads to an ideology that considers engineered humans to be racially supreme. </p>Regulating designer babies
<p>On a policy level, there are many open questions about how governments might legislate a world with designer babies. But it's not totally new territory, considering the West's dark history of eugenics experiments.</p><p>In the 20th century, the U.S. conducted multiple eugenics programs, including immigration restrictions based on genetic inferiority and forced sterilizations. In 1927, for example, the Supreme Court ruled that forcibly sterilizing the mentally handicapped didn't violate the Constitution. Supreme Court Justice Oliver Wendall Holmes wrote, "… three generations of imbeciles are enough." </p><p>After the Holocaust, eugenics programs became increasingly taboo and regulated in the U.S. (though some states continued forced sterilizations <a href="https://www.uvm.edu/~lkaelber/eugenics/" target="_blank">into the 1970s</a>). In recent years, some policymakers and scientists have expressed concerns about how gene-editing technologies could reanimate the eugenics nightmares of the 20th century. </p><p>Currently, the U.S. doesn't explicitly ban human germline genetic editing on the federal level, but a combination of laws effectively render it <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">illegal to implant a genetically modified embryo</a>. Part of the reason is that scientists still aren't sure of the unintended consequences of new gene-editing technologies. </p><p>But there are also concerns that these technologies could usher in a new era of eugenics. After all, the function of a designer baby industry, like the one in the "Genetic Pressure" series, wouldn't necessarily be limited to eliminating genetic diseases; it could also work to increase the occurrence of "desirable" traits. </p><p>If the industry did that, it'd effectively signal that the <em>opposites of those traits are undesirable. </em>As the International Bioethics Committee <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">wrote</a>, this would "jeopardize the inherent and therefore equal dignity of all human beings and renew eugenics, disguised as the fulfillment of the wish for a better, improved life."</p><p><em>"Genetic Pressure Volume I: Baby Steps"</em><em> by Eugene Clark is <a href="http://bigth.ink/38VhJn3" target="_blank">available now.</a></em></p>The mystery of the Bermuda Triangle may finally be solved
Meteorologists propose a stunning new explanation for the mysterious events in the Bermuda Triangle.
One of life's great mysteries, the Bermuda Triangle might have finally found an explanation. This strange region, that lies in the North Atlantic Ocean between Bermuda, Miami and San Juan, Puerto Rico, has been the presumed cause of dozens and dozens of mind-boggling disappearances of ships and planes.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Lair of giant predator worms from 20 million years ago found
Scientists discover burrows of giant predator worms that lived on the seafloor 20 million years ago.
Bobbit worm (Eunice aphroditois)
- Scientists in Taiwan find the lair of giant predator worms that inhabited the seafloor 20 million years ago.
- The worm is possibly related to the modern bobbit worm (Eunice aphroditois).
- The creatures can reach several meters in length and famously ambush their pray.
A three-dimensional model of the feeding behavior of Bobbit worms and the proposed formation of Pennichnus formosae.
Credit: Scientific Reports
Beware the Bobbit Worm!
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="1f9918e77851242c91382369581d3aac"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/_As1pHhyDHY?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>FOSTA-SESTA: Have controversial sex trafficking acts done more harm than good?
The idea behind the law was simple: make it more difficult for online sex traffickers to find victims.
