Here's how to prove that you are a simulation and nothing is real

How do you know you are real? A classic paper by philosopher Nick Bostrom argues you are likely a simulation.

Here's how to prove that you are a simulation and nothing is real
  • Philosopher Nick Bostrom argues that humans are likely computer simulations in the "Simulation Hypothesis".
  • Bostrom thinks advanced civilizations of posthumans will have technology to simulate their ancestors.
  • Elon Musk and others support this idea.


Are we living in a computer-driven simulation? That seems like an impossible hypothesis to prove. But let's just look at how impossible that really is.

For some machine to be able to conjure up our whole reality, it needs to be amazingly powerful, able to keep track of an incalculable number of variables. Consider the course of just one human lifetime, with all of the events it entails, all the materials, ideas and people that one interacts with throughout an average lifespan. Then multiply that by about a hundred billion souls that have graced this planet with their presence so far. The interactions between all these people, as well as the interactions between all the animals, plants, bacterium, planetary bodies, really all the elements we know and don't know to be a part of this world, is what constitutes the reality you encounter today.

Composing all that would require coordinating an almost unimaginable amount of data. Yet, it's just "almost" inconceivable. The fact that we can actually right now in this article attempt to come up with this number is what makes it potentially possible.

So how much data are we talking about? And how would such a machine work?

In 2003, the Swedish philosopher Nick Bostrom, who teaches at University of Oxford, wrote an influential paper on the subject called "Are you living in a computer simulation" that tackles just this subject.

In the paper, Bostrom argues that future people will likely have super-powerful computers on which they could run simulations of their "forebears". These simulations would be so good that the simulated people would think they are conscious. In that case, it's likely that we are among such "simulated minds" rather than "the original biological ones."

In fact, if we don't believe we are simulations, concludes Bostrom, then "we are not entitled to believe that we will have descendants who will run lots of such simulations of their forebears." If you accept one premise (that you'll have powerful super-computing descendants), you have to accept the other (you are simulation).

That's pretty heavy stuff. How to unpack it?

As he goes into the details of his argument, Bostrom writes that within the philosophy of mind, it is possible to conjecture that an artificially-created system could be made to have "conscious experiences" as long as it is equipped with "the right sort of computational structures and processes." It's presumptuous to assume that only experiences within "a carbon‐based biological neural networks inside a cranium" (your head) can gives rise to consciousness. Silicon processors in a computer can be potentially made to mimic the same thing.

Of course, at this point in time this isn't something our computers can do. But we can imagine that the current rate of progress and what we know of the constraints imposed by physical laws can lead to civilizations able to come up with such machines, even turning planets and stars into giant computers. These could be quantum or nuclear but whatever they would be, they could probably run amazingly detailed simulations.

In fact, there is number to represent the kind of power needed to emulate a human brain's functionality, which Bostrom gives as ranging from 1014 to 1017 operations per second. If you hit that kind of computer speed, you can run a reasonable enough human mind within the machine.

Simulating the whole universe, including all the details "down to the quantum level" requires more computing oomph, to the point that it may be "unfeasible," thinks Bostrom. But that may not really be necessary as all the future humans or post-humans would need to do is to simulate the human experience of the universe. They'd just need to make sure the simulated minds don't pick up on anything that doesn't look consistent or "irregularities". You wouldn't have to recreate things the human mind wouldn't ordinarily notice, like things happening at the microscopic level.

Representing the goings on among distant planetary bodies could also be compressed - no need to get into amazing detail among those, certainly not at this point. The machines just need to do a good enough job. As they would keep track of what all the simulated minds believe, they could just fill in the necessary details on demand. They could also edit out any errors if those happen to take place.

Bostrom even provides a number for simulating all of human history, which he puts at around ~1033 ‐ 1036 operations. That would be the goal for the sophisticated enough virtual reality program based on what we already know about their workings. In fact, it's likely just one computer with a mass of a planet can pull off such a task "by using less than one millionth of its processing power for one second," thinks the philosopher. A highly advanced future civilization could build a countless number of such machines.

What could counter such a proposal? Bostrom considers in his paper the possibility that humanity will destroy itself or be destroyed by an outside event like a giant meteor before it reaches this post-human simulated stage. There are actually many ways in which humanity could always be stuck in the primitive stages and not ever be able to create the hypothetical computers needed to simulate entire minds. He even allows for the possibility of our civilization becoming extinct courtesy of human-created self-replicating nanorobots which turn into "mechanical bacteria".

Another point against us living in a simulation would be that future posthumans might not care to or be allowed to run such programs at all. Why do it? What's the upside of creating "ancestor simulations"? He thinks that it's not likely the practice of running such simulations would be so widely assumed to be immoral that it would be banned everywhere. Also, knowing human nature, it's unlikely that there wouldn't be someone in the future who would not find such a project interesting. This is the kind of stuff we would do today if we could and chances are, we would continue to want to do in the far distant future.

"Unless we are now living in a simulation, our descendants will almost certainly never run an ancestor‐simulation," writes Bostrom.

A fascinating outcome of all this speculation is that we have no way of knowing what the true reality of existence really is. Our minds are likely accessing just a small fraction of the "totality of physical existence." What we think we are may be run on virtual machines that are run on other virtual machines - it's like a nesting doll of simulations, making it nearly impossible for us to see beyond to the true nature of things. Even the posthumans simulating us could be themselves simulated. As such, there could be many levels of reality, concludes Bostrom. The future us might likely never know if they are at the "fundamental" or "basement" level.

Interestingly, this uncertainty gives rise to universal ethics. If you don't know you are the original, you better behave or the godlike beings above you will intervene.

What are other implications of these lines of reasoning? Ok, let's assume we are living in a simulation – now what? Bostrom doesn't think our behavior should be affected much, even with such heavy knowledge, especially as we don't know the true motivations of future humans behind creating the simulated minds. They might have entirely different value systems.

If you think this proposal sounds plausible, you would not be alone. Elon Musk and many others are fairly convinced we are just sophisticated self-aware computer programs or maybe even video games.

You can take the plunge and read the full paper by Nick Bostrom for yourself here.

Check out Nick Bostrom’s TED talk on superintelligencies:

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

KIRILL KUDRYAVTSEV/AFP via Getty Images
Surprising Science

Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.

Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less
Quantcast