David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

How MIT's VR environment is saving drones from crashing to death

Sales of drones are clocking in around $200 million and doubling each year. Which means there's a lot of testing to be done.

Bridge roads in Riga city 360 VR Drone picture for virtual reality panorama. (Shutterstock)

Drones, or unmanned vehicles that fly through the air, are used by civilians and the military alike. While the military uses drones to get to areas that are too difficult or risky for humans, commercially drones are used for photography, research, and even racing.

According to Gartner, a research firm, drone sales grew 60% from 2016 to 2017 to $2.2 million, with revenue up 36% to almost $4.5 billion. With estimates of U.S. drone sales doubling year over year, millions of hobbyist drones are now in homes. Per year, sales of drones are clocking in around $200 million, and an average drone from DJI, the leading commercial drone manufacturer, is between $500 to $1,000.

Drones are essential to many fields, such as businesses, the government, and certain industries, like agriculture. Important fields with promising drone-usage include:

  • Photographing

  • Journalism

  • Film

  • Express delivery (think Amazon)

  • Supplying necessities in disaster zones

  • Search and Rescue (thermal sensor drones)

  • Mapping of inaccessible terrains

  • Safety inspections

  • Crops (monitoring, delivery of resources, etc)

  • Cargo transport

  • Law enforcement, like border patrol

  • Strom tracking

With so much money being spent on the development of drones, testing their safety, abilities, and durability are paramount to the industry’s success. After all, with a $500+ price tag, replacing them isn’t cheap. Due to the cost of repairing and replacing drones, a better way to train autonomous drones was needed. That’s where MIT comes in - with a VR training system named “Flight Goggles.”

The VR environment creates indoor obstacles for the drones to fly around, without actually needing to have those obstacles be indoors - the testing facility can remain empty, while the drone sees “real” obstacles. Additional benefits of “Flight Goggles” are endless, as virtual testing facilities in which any environment or condition can be subbed in for the drones to train. 

“We think this is a game-changer in the development of drone technology, for drones that go fast,” Associate Professor Sertac Karaman said in an MIT blog post. “If anything, the system can make autonomous vehicles more responsive, faster, and more efficient.”

Currently, if a researcher wants to fly an autonomous drone, they must set up in a large testing facility in which physical obstacles, like doors and windows, must be brought in, as well as large nets to catch falling drones. When they do crash (and they do) the cost of the project and the development timeline both increase, due to repairs and replacements.

“The moment you want to do high-throughput computing and go fast, even the slightest changes you make to its environment will cause the drone to crash,” said Karaman. “You can’t learn in that environment. If you want to push boundaries on how fast you can go and compute, you need some sort of virtual-reality environment.”

Researchers use a motion capture system, electronics, and an image rendering program to transmit the images to the drone. The images - which are processed by the drone at about 90 frames per second - are all thanks to circuit boards and the VR program the drone operates within.

“The drone will be flying in an empty room, but will be ‘hallucinating’ a completely different environment, and will learn in that environment,” Karaman explains.

During the course of 10 test flights using the VR program, the drone (which files at around 5 miles per hour) successfully flew through a virtual window 361 times, only crashing three times - which doesn’t impact the development of costs. And as the window was virtual, nobody was hurt by glass. So it's a win-win for enthusiasts, researchers, professionals, and everyone in between. 

LIVE EVENT | Radical innovation: Unlocking the future of human invention

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

Bubonic plague case reported in China

Health officials in China reported that a man was infected with bubonic plague, the infectious disease that caused the Black Death.

Vials Of Bacteria That May Cause Plague Missing From TX University

(Photo by Centers for Disease Control and Prevention/Getty Images)
  • The case was reported in the city of Bayannur, which has issued a level-three plague prevention warning.
  • Modern antibiotics can effectively treat bubonic plague, which spreads mainly by fleas.
  • Chinese health officials are also monitoring a newly discovered type of swine flu that has the potential to develop into a pandemic virus.
Keep reading Show less

The dangers of the chemical imbalance theory of depression

A new Harvard study finds that the language you use affects patient outcome.

Image: solarseven / Shutterstock
Mind & Brain
  • A study at Harvard's McLean Hospital claims that using the language of chemical imbalances worsens patient outcomes.
  • Though psychiatry has largely abandoned DSM categories, professor Joseph E Davis writes that the field continues to strive for a "brain-based diagnostic system."
  • Chemical explanations of mental health appear to benefit pharmaceutical companies far more than patients.
Keep reading Show less

Navy SEALs: How to build a warrior mindset

SEAL training is the ultimate test of both mental and physical strength.

  • The fact that U.S. Navy SEALs endure very rigorous training before entering the field is common knowledge, but just what happens at those facilities is less often discussed. In this video, former SEALs Brent Gleeson, David Goggins, and Eric Greitens (as well as authors Jesse Itzler and Jamie Wheal) talk about how the 18-month program is designed to build elite, disciplined operatives with immense mental toughness and resilience.
  • Wheal dives into the cutting-edge technology and science that the navy uses to prepare these individuals. Itzler shares his experience meeting and briefly living with Goggins (who was also an Army Ranger) and the things he learned about pushing past perceived limits.
  • Goggins dives into why you should leave your comfort zone, introduces the 40 percent rule, and explains why the biggest battle we all face is the one in our own minds. "Usually whatever's in front of you isn't as big as you make it out to be," says the SEAL turned motivational speaker. "We start to make these very small things enormous because we allow our minds to take control and go away from us. We have to regain control of our mind."
Keep reading Show less
Scroll down to load more…