To Break Bad Habits, You Must Create New Ones

Rather than focus on not doing something you shouldn't do, create a new habit to override the old, bad one.

To Break Bad Habits, You Must Create New Ones

Rather than trying to focus on getting rid of a bad habit, it may be easier to try developing a new one (preferably one that's also positive, too).


Melissa Dahl from NYMag writes on an interview with Art Markman, a University of Texas at Austin psychologist, who has struggled forming his own positive habits and breaking his bad ones. In his interview with The Psychology Podcast, he talks about the power of positive goals versus negative goals. For instance, say you don't want to bite your nails anymore:

“Because it’s something you don’t want to do. And the reason that that’s a problem is because your habit-learning system is an active system. It wants to associate behaviors with the environment. If you say I don’t want to do something, then what you’re doing is focusing yourself on not acting.”

Markman says in his interview that it's much easier to learn something new than to break an old habit. So, the best way to break that bad habit is to replace it with a new one. Brett McKay from the Art of Manliness found his own research to break his habits, and discovered his actions could be broken down into three steps: cue, routine, and reward.

In order to figure out what cue was driving his routine to drink Mountain Dew in the afternoon, he tried replacing the habit with drinking water one day and going out for a walk the next. In his own tests, he found that the quick walk won out and helped him get that burst of energy he needed to get through the rest of the day. Likewise, Markman found he would bite his nails while he read. So, he got some toys and squish balls to play with, which did the trick — his hands simply required some occupation while he read.

Of course, changing these long-held habits does take some effort. Studies say it takes 66 days to form a new one. But with some mental trickery to recognize the routine you need to change in order to get that same feeling of reward, you'll be well on your way to forming a more productive, positive habit.

What bad habit have you conquered or wish to overcome? Sound off in the comments below.

Read more at NYMag.

Photo Credit:

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

CRISPR therapy cures first genetic disorder inside the body

It marks a breakthrough in using gene editing to treat diseases.

Credit: National Cancer Institute via Unsplash
Technology & Innovation

This article was originally published by our sister site, Freethink.

For the first time, researchers appear to have effectively treated a genetic disorder by directly injecting a CRISPR therapy into patients' bloodstreams — overcoming one of the biggest hurdles to curing diseases with the gene editing technology.

The therapy appears to be astonishingly effective, editing nearly every cell in the liver to stop a disease-causing mutation.

The challenge: CRISPR gives us the ability to correct genetic mutations, and given that such mutations are responsible for more than 6,000 human diseases, the tech has the potential to dramatically improve human health.

One way to use CRISPR to treat diseases is to remove affected cells from a patient, edit out the mutation in the lab, and place the cells back in the body to replicate — that's how one team functionally cured people with the blood disorder sickle cell anemia, editing and then infusing bone marrow cells.

Bone marrow is a special case, though, and many mutations cause disease in organs that are harder to fix.

Another option is to insert the CRISPR system itself into the body so that it can make edits directly in the affected organs (that's only been attempted once, in an ongoing study in which people had a CRISPR therapy injected into their eyes to treat a rare vision disorder).

Injecting a CRISPR therapy right into the bloodstream has been a problem, though, because the therapy has to find the right cells to edit. An inherited mutation will be in the DNA of every cell of your body, but if it only causes disease in the liver, you don't want your therapy being used up in the pancreas or kidneys.

A new CRISPR therapy: Now, researchers from Intellia Therapeutics and Regeneron Pharmaceuticals have demonstrated for the first time that a CRISPR therapy delivered into the bloodstream can travel to desired tissues to make edits.

We can overcome one of the biggest challenges with applying CRISPR clinically.

—JENNIFER DOUDNA

"This is a major milestone for patients," Jennifer Doudna, co-developer of CRISPR, who wasn't involved in the trial, told NPR.

"While these are early data, they show us that we can overcome one of the biggest challenges with applying CRISPR clinically so far, which is being able to deliver it systemically and get it to the right place," she continued.

What they did: During a phase 1 clinical trial, Intellia researchers injected a CRISPR therapy dubbed NTLA-2001 into the bloodstreams of six people with a rare, potentially fatal genetic disorder called transthyretin amyloidosis.

The livers of people with transthyretin amyloidosis produce a destructive protein, and the CRISPR therapy was designed to target the gene that makes the protein and halt its production. After just one injection of NTLA-2001, the three patients given a higher dose saw their levels of the protein drop by 80% to 96%.

A better option: The CRISPR therapy produced only mild adverse effects and did lower the protein levels, but we don't know yet if the effect will be permanent. It'll also be a few months before we know if the therapy can alleviate the symptoms of transthyretin amyloidosis.

This is a wonderful day for the future of gene-editing as a medicine.

—FYODOR URNOV

If everything goes as hoped, though, NTLA-2001 could one day offer a better treatment option for transthyretin amyloidosis than a currently approved medication, patisiran, which only reduces toxic protein levels by 81% and must be injected regularly.

Looking ahead: Even more exciting than NTLA-2001's potential impact on transthyretin amyloidosis, though, is the knowledge that we may be able to use CRISPR injections to treat other genetic disorders that are difficult to target directly, such as heart or brain diseases.

"This is a wonderful day for the future of gene-editing as a medicine," Fyodor Urnov, a UC Berkeley professor of genetics, who wasn't involved in the trial, told NPR. "We as a species are watching this remarkable new show called: our gene-edited future."

UFOs: US intelligence report finds no aliens but plenty of unidentified flying objects

A new government report describes 144 sightings of unidentified aerial phenomena.

Photo by Albert Antony on Unsplash
Surprising Science

On June 25, 2021, the Office of the Director of National Intelligence released a much-anticipated report on UFOs to Congress.

Keep reading Show less
Quantcast