Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Neuroplasticity and Exercise Will Keep Your Brain Young and Spry
If you're not routinely keeping your brain fit through physical and mental exercise, you're putting yourself at risk for an early descent into Age Related Cognitive Decline (ARCD). Do your brain a favor and feed it what it likes.

Our poor brains.
From 25-years-old on, it's just one long downward spiral toward Age Related Cognitive Decline (ARCD). As Dr. Jack Lewis writes at The Independent, ARCD is an inevitable part of aging. If we were all to live to be 150, he says, our capacity to maintain focus and memory will have long since degraded. It's just a simple fact of life... or at least until those darn scientists figure out this whole immortality thing.
If the above bit of cranial memento mori is getting you down, Dr. Lewis offers solace by suggesting several strategies you can employ to stall the process by which your brain shrinks toward ineffectuality. The first is to exercise regularly. The brain thrives when steady streams of blood pump oxygen through it. Sitting at your desk 40 hours every week isn't doing your brain any favors. Go for a long walk after work in order to feed it what it likes.
Something else you can do to keep your brain fit is to take advantage of neuroplasticity. Just as the muscles in your body get stronger when you exercise them, our brains benefit from activities that cause it to change and adapt.
"By consistently challenging it with fresh mental activities, your brain will be continually forced to restructure, rewire and build new connections to cope with the new demands placed on it."
There are four activities Dr. Lewis cites as delayers of ARCD: learning a musical instrument, playing chess, dancing, and reading.
Each of these activities requires your brain to interpret, adapt, or think critically. Learning guitar requires memorization of finger movements. Playing chess is all about stretching cognitive capacity. Dancing is similar to playing an instrument, though with an intrinsic social element added. Reading involves connecting words on a page with an understanding of what they mean in your mind.
Those four (plus exercise) are but the tip of the iceberg. Learning a new language is another way to expand your brain through neuroplasticity. No matter how you choose to keep your brain in shape, coupling these activities with exercise will postpone ARCD, and thus dementia and Alzheimer's. It's the least we can do for our poor and doomed brains.
Wendy Suzuki understands the importance of a healthy brain. Meditation has been proven as another method to keep our brains healthy, happy, and up to date. Dr. Suzuki explains how short bursts of meditation can change the biology of your brain for the better, making you healthier and happier.

--
Read more at EurekAlert!
Read more at The Independent
Photo credit: Jezper / Shutterstock
Massive 'Darth Vader' isopod found lurking in the Indian Ocean
The father of all giant sea bugs was recently discovered off the coast of Java.
A close up of Bathynomus raksasa
- A new species of isopod with a resemblance to a certain Sith lord was just discovered.
- It is the first known giant isopod from the Indian Ocean.
- The finding extends the list of giant isopods even further.
The ocean depths are home to many creatures that some consider to be unnatural.
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzU2NzY4My9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTYxNTUwMzg0NX0.BTK3zVeXxoduyvXfsvp4QH40_9POsrgca_W5CQpjVtw/img.png?width=980" id="b6fb0" class="rm-shortcode" data-rm-shortcode-id="2739ec50d9f9a3bd0058f937b6d447ac" data-rm-shortcode-name="rebelmouse-image" data-width="1512" data-height="2224" />Bathynomus raksasa specimen (left) next to a closely related supergiant isopod, B. giganteus (right)
<p>According to<a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="dofollow"> LiveScience</a>, the Bathynomus genus is sometimes referred to as "Darth Vader of the Seas" because the crustaceans are shaped like the character's menacing helmet. Deemed Bathynomus raksasa ("raksasa" meaning "giant" in Indonesian), this cockroach-like creature can grow to over 30 cm (12 inches). It is one of several known species of giant ocean-going isopod. Like the other members of its order, it has compound eyes, seven body segments, two pairs of antennae, and four sets of <a href="https://www.livescience.com/supergiant-isopod-newfound-species.html" target="_blank" rel="noopener noreferrer dofollow">jaws</a>.</p><p>The incredible size of this species is likely a result of deep-sea gigantism. This is the tendency for creatures that inhabit deeper parts of the ocean to be much larger than closely related species that live in shallower waters. B. raksasa appears to make its home between 950 and 1,260 meters (3,117 and 4,134 ft) below sea <a href="https://news.nus.edu.sg/research/new-species-supergiant-isopod-uncovered" target="_blank" rel="noopener noreferrer dofollow">level</a>. </p><p>Perhaps fittingly for a creature so creepy looking, that is the lower sections of what is commonly called <a href="https://en.wikipedia.org/wiki/Mesopelagic_zone" target="_blank" rel="noopener noreferrer dofollow">The Twilight Zone</a><em>, </em>named for the lack of light available at such depths. </p><p>It isn't the only giant isopod, <a href="https://en.wikipedia.org/wiki/Giant_isopod" target="_blank">far from it</a>. Other species of ocean-going isopod can get up to 50 cm long (20 inches) and also look like they came out of a nightmare. These are the unusual ones, though. Most of the time, isopods stay at much more reasonable <a href="https://indianexpress.com/article/explained/explained-raksasa-cockroach-from-the-deep-the-stuff-nightmares-are-made-of-6513281/" target="_blank" rel="noopener noreferrer dofollow">sizes</a>. </p><p>The discovery of this new species was published in <a href="https://zookeys.pensoft.net/article/53906/" target="_blank" rel="noopener noreferrer dofollow">ZooKeys</a>. The remainder of the specimens from the trip are still being analyzed. The full report will be published <a href="https://www.futurity.org/deep-sea-giant-isopod-bathynomus-raksasa-2422042/" target="_blank" rel="noopener noreferrer dofollow">shortly</a>.<em> </em></p>What benefit does this find have for science? And is it as evil as it looks?
<div class="rm-shortcode" data-media_id="7XqcvwWp" data-player_id="FvQKszTI" data-rm-shortcode-id="8506fcd195866131efb93525ae42dec4"> <div id="botr_7XqcvwWp_FvQKszTI_div" class="jwplayer-media" data-jwplayer-video-src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"> <img src="https://cdn.jwplayer.com/thumbs/7XqcvwWp-1920.jpg" class="jwplayer-media-preview" /> </div> <script src="https://content.jwplatform.com/players/7XqcvwWp-FvQKszTI.js"></script> </div> <p>The discovery of a new species is always a cause for celebration in zoology. That this is the discovery of an animal that inhabits the deeps of the sea, one of the least explored areas humans can get to, is the icing on the cake.</p><p>Helen Wong of the National University of Singapore, who co-authored the species' description, explained the importance of the discovery:</p><p>"The identification of this new species is an indication of just how little we know about the oceans. There is certainly more for us to explore in terms of biodiversity in the deep sea of our region." </p><p>The animal's visual similarity to Darth Vader is a result of its compound eyes and the curious shape of its <a href="https://lkcnhm.nus.edu.sg/research/sjades2018/" target="_blank" rel="noopener noreferrer dofollow" style="">head</a>. However, given the location of its discovery, the bottom of the remote seas, it may be associated with all manner of horrifically evil Elder Things and <a href="https://en.wikipedia.org/wiki/Cthulhu" target="_blank" rel="dofollow">Great Old Ones</a>. <em></em></p>Scientists find 'smoking gun' proof of a recent supernova near Earth
A supernova exploded near Earth about 2.5 million years ago, possibly causing an extinction event.
An artist's impression of a supernova.
- Researchers from the University of Munich find evidence of a supernova near Earth.
- A star exploded close to our planet about 2.5 million years ago.
- The scientists deduced this by finding unusual concentrations of isotopes, created by a supernova.
This Manganese crust started to form about 20 million years ago. Growing layer by layer, it resulted in minerals precipitated out of seawater. The presence of elevated concentrations of 60 Fe and 56 Mn in layers from 2.5 million years ago hints at a nearby supernova explosion around that time.
Credit: Dominik Koll/ TUM
World-record laser transmission could prove Einstein's theory
Researchers devise a record-breaking laser transmission that avoids atmospheric interference.
University of Western Australia's rooftop observatory.
- Researchers from Australia and France team up for a record-breaking laser transmission.
- The new technique avoids atmospheric interference.
- It can be used to test aspects of Einstein's theory of relativity and advance communications.
Scientists achieved the most stable transmission of a laser signal through the atmosphere ever made, beating a world record. The team managed to send laser signals from one point to another while avoiding interference from the atmosphere. Their very precise method can allow for unprecedented comparisons of the flow of time in separate locations. This can enable scientists to carry out new tests of Einstein's celebrated theory of general relativity, and have wide applications across different fields.
For the record transmission, the researchers combined phase stabilization technology with advanced self-guiding optical terminals. They used two identical phase stabilization systems, which had their transmitters located in one building while receivers were in another. One system used optical terminals to send the optical signal over a 265 m free-space path between the buildings. Another system transmitted using a 715 m-long optical fiber cable, essentially to keep tabs on the performance of the free-space link.. The terminals were outfitted with mirrors to prevent interference like phase noise and beam wander.
The scientists hailed from Australia's International Centre for Radio Astronomy Research (ICRAR) and the University of Western Australia (UWA), as well as the French National Centre for Space Studies (CNES) and the French metrology lab Systèmes de Référence Temps-Espace (SYRTE) at Paris Observatory.
The study's lead author Benjamin Dix-Matthews, a Ph.D. student at ICRAR and UWA, highlighted the innovation and potential of their technique. "We can correct for atmospheric turbulence in 3-D, that is, left-right, up-down and, critically, along the line of flight," said Dix-Matthews in a press release. "It's as if the moving atmosphere has been removed and doesn't exist. It allows us to send highly stable laser signals through the atmosphere while retaining the quality of the original signal."
Block diagram of the experimental link that shows two identical phase stabilization systems on the CNES campus. Both of the systems have their transmitter in the Auger building (local site), and both receivers are located in the Lagrange building (remote site). One transmits the optical signal over a 265 m free-space path in-between the buildings while utilizing tip-tilt active optics terminals. The other transmits using 715 m of optical fiber.
Credit: Dix-Matthews, Nature Communications
Dr. Sascha Schediwy, ICRAR-UWA senior researcher, envisioned numerous applications for their technology, whose precise performance beats even the best optical atomic clocks. Putting one of these optical terminals on the ground while another one is on a satellite in space would help the exploration of fundamental physics, according to Schediwy. Other applications could extend to testing Einstein's theories with greater precision as well as understanding the time-related changes of fundamental physical constants and making advanced measurements in earth science and geophysics.
Optical communications, a field that that utilizes light for sending information, could also benefit. The new tech can improve its data rates by "orders of magnitude," thinks Dr. Schediwy. "The next generation of big data-gathering satellites would be able to get critical information to the ground faster," he added.
Check out the new study in Nature Communications.
8 big thinkers to follow on social media in 2021
Journalists, doctors, and others you should know.
