Harry Potter Tech—Could Some of Harry’s Magical Implements Work in Real Life?

Researchers at Queen Mary University have inched us closer toward an invisibility cloak, for starters. 

 

One of the many captivating elements of the Harry Potter series is the various magical implements Harry and his friends come across. Wouldn’t these be helpful in real life? A quick broomstick ride to work could help you avoid traffic, and save on gas. Don’t forget your evening quidditch match.


Need a change or perhaps a new direction in life? The Mirror of Erised can show you what path to take. And forget growing old gracefully. To live forever, all you’ll need to do is get your hands on The Philosopher’s Stone. Is it possible? Not today. But geneticists are getting closer to inhibiting telomere degradation, and so expanding the human lifespan.

Imagine having an invisibility cloak, allowing you to slip out of the office early on a Friday, unnoticed. You could even use it to hide from your spouse or kids, when you really need some alone time. Researchers at Queen Mary University of London have inched closer toward making this a reality.

They created a material which could feasibly make something invisible. It’s made of seven ultra-thin layers, which taken together collect electromagnetic waves and deflects them, scattering them about. Theoretically, placing sensors around the body, which use this material, could make such a cloak possible. Several other invisibility experiments out of the University of Austin, the University of Rochester, and others have shown similar promise.

Invisibility cloak scene from Harry Potter and the Philosopher’s Stone.

How about Gillyweed, which when swallowed allows you to grow gills and breathe underwater? Scuba and snorkeling enthusiasts would love to ditch their gear and explore the murky depths, unencumbered. Another great idea for those active among us is Skele-Gro, which helps replace broken bones. Recently, students at the University of Leicester’s Natural Sciences Department investigated whether these two items are technologically feasible.  

Gillyweed appears in Harry Potter and The Goblet of Fire. In his second wizardly task, Harry must swim to the bottom of Black Lake. He consumes the weed, which allows him to grow gills. Students Rowan Reynolds and Chris Ringrose investigated this, and outlined their results in a paper, published in the Journal for Interdisciplinary Science Topics. They found that the gills themselves would have to cover around 60 cm² (9.3 in²) of surface area, in order to produce enough oxygen for swimming.

To breathe underwater, the average 14 year-old would need to process 443 liters (117 gal) of water per minute at 100% efficiency. The water would need to flow in at 2.46 meters (8 ft.) per second. This is twice the speed of normal airflow. Another issue, Harry doesn’t swim with his mouth open in the story. Creatures with gills have to, as it allows the water to enter the throat and pass out through the gills, where oxygen is collected.

There is however a device coming out that supposedly, lets you breathe underwater. A mouthpiece with two filter sections on either side that look like mountain bike handles, but are angled backward like fins. Two years in the making, the founders of the device, called Triton, has raised $850,000 on Indiegogo. The company claims that tiny holes in the filters flanking the mouthpiece allow oxygen to slip past, while holding back the rest of the molecules in water. But other scientists have weighed in, saying it’s physically impossible. This wouldn’t be the first crowdfunded letdown. Only time can tell whether or not it works.

Gillyweed scene from Harry Potter and the Goblet of Fire.

The second concept the British students tested was Skele-Gro. In Harry Potter and the Chamber of Secrets, Harry’s arm gets broken during an intense quidditch match. Madam Pomfrey removes the bones entirely. Then Harry is given Skele-Gro, and overnight the missing bones are replaced. Would something like this ever be possible? Students Chris Ringrose, Leah Ashley, and Robbie Roe tested its feasibility.

They calculated at what rate Harry’s bones would need to grow and how much energy would be required, so as to replace his arm bones in this manner and time-frame. By studying the text, students calculated that bone regeneration occurred 90 times more quickly than is scientifically possible today, or three months versus one day. Since there is no mention of him eating, Skele-Gro must also supply 133,050 calories worth of energy to make such bone regeneration possible, a feat quite impossible by today’s standards.

However, when it comes to rapid bone growth itself, researchers at the University of the West of Scotland and the University of Glasgow collaborated on a study that successfully used gravitational waves to regrow bones. Bone is the second most commonly transplanted tissue in the world, behind blood. It is hoped that this technology will help patients regrow their own bones, when combined with stem cell therapy.

Unfortunately, there’s no word yet on flying broom technology. But of course, if the Potter series has taught us anything, it is that one mustn’t give up hope.

To learn more about where we are at with that invisibility cloak, click here: 

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Why are so many objects in space shaped like discs?

It's one of the most consistent patterns in the unviverse. What causes it?

Videos
  • Spinning discs are everywhere – just look at our solar system, the rings of Saturn, and all the spiral galaxies in the universe.
  • Spinning discs are the result of two things: The force of gravity and a phenomenon in physics called the conservation of angular momentum.
  • Gravity brings matter together; the closer the matter gets, the more it accelerates – much like an ice skater who spins faster and faster the closer their arms get to their body. Then, this spinning cloud collapses due to up and down and diagonal collisions that cancel each other out until the only motion they have in common is the spin – and voila: A flat disc.

Scientists study tattooed corpses, find pigment in lymph nodes

It turns out, that tattoo ink can travel throughout your body and settle in lymph nodes.

17th August 1973: An American tattoo artist working on a client's shoulder. (Photo by F. Roy Kemp/BIPs/Getty Images)
popular

In the slightly macabre experiment to find out where tattoo ink travels to in the body, French and German researchers recently used synchrotron X-ray fluorescence in four "inked" human cadavers — as well as one without. The results of their 2017 study? Some of the tattoo ink apparently settled in lymph nodes.


Image from the study.

As the authors explain in the study — they hail from Ludwig Maximilian University of Munich, the European Synchrotron Radiation Facility, and the German Federal Institute for Risk Assessment — it would have been unethical to test this on live animals since those creatures would not be able to give permission to be tattooed.

Because of the prevalence of tattoos these days, the researchers wanted to find out if the ink could be harmful in some way.

"The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body," they write.

It works like this: Since lymph nodes filter lymph, which is the fluid that carries white blood cells throughout the body in an effort to fight infections that are encountered, that is where some of the ink particles collect.

Image by authors of the study.

Titanium dioxide appears to be the thing that travels. It's a white tattoo ink pigment that's mixed with other colors all the time to control shades.

The study's authors will keep working on this in the meantime.

“In future experiments we will also look into the pigment and heavy metal burden of other, more distant internal organs and tissues in order to track any possible bio-distribution of tattoo ink ingredients throughout the body. The outcome of these investigations not only will be helpful in the assessment of the health risks associated with tattooing but also in the judgment of other exposures such as, e.g., the entrance of TiO2 nanoparticles present in cosmetics at the site of damaged skin."

Photo by Alina Grubnyak on Unsplash
Mind & Brain

Do human beings have a magnetic sense? Biologists know other animals do. They think it helps creatures including bees, turtles and birds navigate through the world.

Keep reading Show less