Environment: Opportunity for CREATIVITY

I've been thinking of different ways scientists and engineers could have prepared the world population for the extreme weather problems. By not financing weaponry but instead innovative solutions to natural disasters we could have been way ahead of the game by now.

The line of trees in the photo were planted after a wildfire disaster in Sprati, Greece.  Planting fast growing trees is one of the many solutions to preventing erosion quickly after a natural disaster such as the wildfires.


I've been trying to think even bigger and I hope other Big Thinkers will have ideas to add.

The flood in the Philippines could have been a gift from heaven for populations suffering from drought.

Water harvesting is a habit we all need to nurture.

I imagine hundreds of robotic drones flying to the area as soon as the rains start.  Each drone would drop a large curved flexible plastic sheet tethered to the drone at four corners in order to catch the rain.  When the plastic sheet is full enough a gadget would pop out of the drone and tie up the top of the sheet, cut it free and let the large balloon full of water drop to the sea where boats would pull it to Africa.

We already have the drones and the balloons that are pulled by boats (for example, to take water to Santorini and other islands without fresh water supplies in the summer.)

I know we have engineers that could design the rest.

This seems to me to be a win-win situation.  Catch the water -

save the Phillipines from a devestating flood and give water to those who must have water to survive.

It could happen!

Drill, Baby, Drill: What will we look for when we’re mining on Mars?

It's unlikely that there's anything on the planet that is worth the cost of shipping it back

Photo Credit: National Geographic/Richard Donnelly
Surprising Science
  • In the second season of National Geographic Channel's MARS (premiering tonight, 11/12/18,) privatized miners on the red planet clash with a colony of international scientists
  • Privatized mining on both Mars and the Moon is likely to occur in the next century
  • The cost of returning mined materials from Space to the Earth will probably be too high to create a self-sustaining industry, but the resources may have other uses at their origin points

Want to go to Mars? It will cost you. In 2016, SpaceX founder Elon Musk estimated that manned missions to the planet may cost approximately $10 billion per person. As with any expensive endeavor, it is inevitable that sufficient returns on investment will be needed in order to sustain human presence on Mars. So, what's underneath all that red dust?

Mining Technology reported in 2017 that "there are areas [on Mars], especially large igneous provinces, volcanoes and impact craters that hold significant potential for nickel, copper, iron, titanium, platinum group elements and more."

Were a SpaceX-like company to establish a commercial mining presence on the planet, digging up these materials will be sure to provoke a fraught debate over environmental preservation in space, Martian land rights, and the slew of microbial unknowns which Martian soil may bring.

In National Geographic Channel's genre-bending narrative-docuseries, MARS, (the second season premieres tonight, November 12th, 9 pm ET / 8 pm CT) this dynamic is explored as astronauts from an international scientific coalition go head-to-head with industrial miners looking to exploit the planet's resources.

Given the rate of consumption of minerals on Earth, there is plenty of reason to believe that there will be demand for such an operation.

"Almost all of the easily mined gold, silver, copper, tin, zinc, antimony, and phosphorus we can mine on Earth may be gone within one hundred years" writes Stephen Petranek, author of How We'll Live on Mars, which Nat Geo's MARS is based on. That grim scenario will require either a massive rethinking of how we consume metals on earth, or supplementation from another source.

Elon Musk, founder of SpaceX, told Petranek that it's unlikely that even if all of Earth's metals were exhausted, it is unlikely that Martian materials could become an economically feasible supplement due to the high cost of fuel required to return the materials to Earth. "Anything transported with atoms would have to be incredibly valuable on a weight basis."

Actually, we've already done some of this kind of resource extraction. During NASA's Apollo missions to the Moon, astronauts used simple steel tools to collect about 842 pounds of moon rocks over six missions. Due to the high cost of those missions, the Moon rocks are now highly valuable on Earth.


Moon rock on display at US Space and Rocket Center, Huntsville, AL (Big Think/Matt Carlstrom)

In 1973, NASA valuated moon rocks at $50,800 per gram –– or over $300,000 today when adjusted for inflation. That figure doesn't reflect the value of the natural resources within the rock, but rather the cost of their extraction.

Assuming that Martian mining would be done with the purpose of bringing materials back to Earth, the cost of any materials mined from Mars would need to include both the cost of the extraction and the value of the materials themselves. Factoring in the price of fuel and the difficulties of returning a Martian lander to Earth, this figure may be entirely cost prohibitive.

What seems more likely, says Musk, is for the Martian resources to stay on the Red Planet to be used for construction and manufacturing within manned colonies, or to be used to support further mining missions of the mineral-rich asteroid belt between Mars and Jupiter.

At the very least, mining on Mars has already produced great entertainment value on Earth: tune into Season 2 of MARS on National Geographic Channel.

For thousands of years, humans slept in two shifts. Should we do it again?

Researchers believe that the practice of sleeping through the whole night didn’t really take hold until just a few hundred years ago.

The Bed by Henri de Toulouse-Lautrec.
Surprising Science

She was wide awake and it was nearly two in the morning. When asked if everything was alright, she said, “Yes.” Asked why she couldn’t get to sleep she said, “I don’t know.” Neuroscientist Russell Foster of Oxford might suggest she was exhibiting “a throwback to the bi-modal sleep pattern." Research suggests we used to sleep in two segments with a period of wakefulness in-between.

Keep reading Show less

Antimicrobial resistance is a growing threat to good health and well-being

Antimicrobial resistance is growing worldwide, rendering many "work horse" medicines ineffective. Without intervention, drug-resistant pathogens could lead to millions of deaths by 2050. Thankfully, companies like Pfizer are taking action.

Image courtesy of Pfizer.
Sponsored
  • Antimicrobial-resistant pathogens are one of the largest threats to global health today.
  • As we get older, our immune systems age, increasing our risk of life threatening infections. Without reliable antibiotics, life expectancy could decline for the first time in modern history.
  • If antibiotics become ineffective, common infections could result in hospitalization or even death. Life-saving interventions like cancer treatments and organ transplantation would become more difficult, more often resulting in death. Routine procedures would become hard to perform.
  • Without intervention, resistant pathogens could result in 10 million annual deaths by 2050.
  • By taking a multi-faceted approach—inclusive of adherence to good stewardship, surveillance and responsible manufacturing practices, as well as an emphasis on prevention and treatment—companies like Pfizer are fighting to help curb the spread.
Keep reading Show less