How NASA's ICESat-2 will track ice changes in Antarctica, Greenland

Using advanced laser technology, scientists at NASA will track global changes in ice with greater accuracy.

Leaving from Vandenberg Air Force base in California this coming Saturday, at 8:46 a.m. ET, the Ice, Cloud, and Land Elevation Satellite-2 — or, the "ICESat-2" — is perched atop a United Launch Alliance Delta II rocket, and when it assumes its orbit, it will study ice layers at Earth's poles, using its only payload, the Advance Topographic Laser Altimeter System (ATLAS).


The device will fire one laser split into six green beams, at 10,000 pulses each second. These pulses of light contain trillions of photons; just about a dozen will make it back to the satellite, but of those that do, it will measure how long it took for them to return to the satellite after bouncing off of ice, landscape, trees, etc.

These measurements will be taken every 28 inches (71 cm), which will return an incredible amount of data as it studies the world. For example, it will be able to track ice changes annually in the Antarctic and Greenland ice sheets, within 4 mm (0.16 inches).

Image from NASA/Goddard video

The overarching goal here is to measure ice levels as they ebb and flow, especially at Earth's coldest regions. That will then provide unprecedented data for those studying climate change and its impact across the world. The first iteration, ICESat-I, used a single laser, the Geoscience Laser Altimeter System, and it fired them at 40 pulses per second — 250 times slower than the new model. Data from a follow-up study using aircraft, known as IceBridge, as well as that from ICESat-I, will be used as comparisons to what ICESat-2 gathers.

Indeed, the accuracy is the thing that's really powerful here. A press release about ICESat-2 gave a good indication of how much more precise this one is than its predeccesor:

As a comparison, if the two instruments [ICESat-I and II] took measurements over a football field, GLAS would have collected data points outside the two end zones, but ICESat-2's ATLAS would take measurements between each yard line.

As to the technology involved, even some of the people who worked on it are shocked at its capability; Thorsten Markus, the mission's project scientist at NASA's Goddard Space Flight Center, declared: “I'm a physicist, and I'm still shocked it works."

Here are 10 quick facts about this mission that explain it quite well:

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Why is 18 the age of adulthood if the brain can take 30 years to mature?

Neuroscience research suggests it might be time to rethink our ideas about when exactly a child becomes an adult.

Mind & Brain
  • Research suggests that most human brains take about 25 years to develop, though these rates can vary among men and women, and among individuals.
  • Although the human brain matures in size during adolescence, important developments within the prefrontal cortex and other regions still take pace well into one's 20s.
  • The findings raise complex ethical questions about the way our criminal justice systems punishes criminals in their late teens and early 20s.
Keep reading Show less

Believe in soulmates? You're more likely to 'ghost' romantic partners.

Does believing in true love make people act like jerks?

Thought Catalog via Unsplash
Sex & Relationships
  • Ghosting, or cutting off all contact suddenly with a romantic partner, is not nice.
  • Growth-oriented people (who think relationships are made, not born) do not appreciate it.
  • Destiny-oriented people (who believe in soulmates) are more likely to be okay with ghosting.
Keep reading Show less

Mini-brains attach to spinal cord and twitch muscles

A new method of growing mini-brains produces some startling results.

(Lancaster, et al)
Surprising Science
  • Researchers find a new and inexpensive way to keep organoids growing for a year.
  • Axons from the study's organoids attached themselves to embryonic mouse spinal cord cells.
  • The mini-brains took control of muscles connected to the spinal cords.
Keep reading Show less