How NASA's ICESat-2 will track ice changes in Antarctica, Greenland

Using advanced laser technology, scientists at NASA will track global changes in ice with greater accuracy.

Leaving from Vandenberg Air Force base in California this coming Saturday, at 8:46 a.m. ET, the Ice, Cloud, and Land Elevation Satellite-2 — or, the "ICESat-2" — is perched atop a United Launch Alliance Delta II rocket, and when it assumes its orbit, it will study ice layers at Earth's poles, using its only payload, the Advance Topographic Laser Altimeter System (ATLAS).


The device will fire one laser split into six green beams, at 10,000 pulses each second. These pulses of light contain trillions of photons; just about a dozen will make it back to the satellite, but of those that do, it will measure how long it took for them to return to the satellite after bouncing off of ice, landscape, trees, etc.

These measurements will be taken every 28 inches (71 cm), which will return an incredible amount of data as it studies the world. For example, it will be able to track ice changes annually in the Antarctic and Greenland ice sheets, within 4 mm (0.16 inches).

Image from NASA/Goddard video

The overarching goal here is to measure ice levels as they ebb and flow, especially at Earth's coldest regions. That will then provide unprecedented data for those studying climate change and its impact across the world. The first iteration, ICESat-I, used a single laser, the Geoscience Laser Altimeter System, and it fired them at 40 pulses per second — 250 times slower than the new model. Data from a follow-up study using aircraft, known as IceBridge, as well as that from ICESat-I, will be used as comparisons to what ICESat-2 gathers.

Indeed, the accuracy is the thing that's really powerful here. A press release about ICESat-2 gave a good indication of how much more precise this one is than its predeccesor:

As a comparison, if the two instruments [ICESat-I and II] took measurements over a football field, GLAS would have collected data points outside the two end zones, but ICESat-2's ATLAS would take measurements between each yard line.

As to the technology involved, even some of the people who worked on it are shocked at its capability; Thorsten Markus, the mission's project scientist at NASA's Goddard Space Flight Center, declared: “I'm a physicist, and I'm still shocked it works."

Here are 10 quick facts about this mission that explain it quite well:

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Is this why time speeds up as we age?

We take fewer mental pictures per second.

(MPH Photos/giphy/yShutterstock/Big Think)
Mind & Brain
  • Recent memories run in our brains like sped-up old movies.
  • In childhood, we capture images in our memory much more quickly.
  • The complexities of grownup neural pathways are no match for the direct routes of young brains.
Keep reading Show less

New alternative to Trump's wall would create jobs, renewable energy, and increase border security

A consortium of scientists and engineers have proposed that the U.S. and Mexico build a series of guarded solar, wind, natural gas and desalination facilities along the entirety of the border.

Credit: Purdue University photo/Jorge Castillo Quiñones
Politics & Current Affairs
  • The proposal was recently presented to several U.S. members of Congress.
  • The plan still calls for border security, considering all of the facilities along the border would be guarded and connected by physical barriers.
  • It's undoubtedly an expensive and complicated proposal, but the team argues that border regions are ideal spots for wind and solar energy, and that they could use the jobs and fresh water the energy park would create.
Keep reading Show less

Why are so many objects in space shaped like discs?

It's one of the most consistent patterns in the unviverse. What causes it?

Videos
  • Spinning discs are everywhere – just look at our solar system, the rings of Saturn, and all the spiral galaxies in the universe.
  • Spinning discs are the result of two things: The force of gravity and a phenomenon in physics called the conservation of angular momentum.
  • Gravity brings matter together; the closer the matter gets, the more it accelerates – much like an ice skater who spins faster and faster the closer their arms get to their body. Then, this spinning cloud collapses due to up and down and diagonal collisions that cancel each other out until the only motion they have in common is the spin – and voila: A flat disc.