Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

The #1 source of plastic trash in our oceans? Cigarette butts.

Ocean Conservancy has collected more than 60 million butts since the '80s.

man on beach with smoking cigarette in hand
Getty Images
  • Cigarette butts outnumber plastic bottles and grocery bags.
  • The toxins from the butts are eaten by fish, which end up back inside of our bodies.
  • Stricter legislation is the only way to solve this problem.


    Tossing a cigarette butt is ingrained to the point of seeming inconsequential. However, beyond the damage cigarettes wreak on our lungs, immune system, skin, and teeth, another harrowing reality is upon us: cigarette butts are the number one source of ocean waste, according to a new report by Ocean Conservancy, beating out food wrappers, plastic bottles and caps, and plastic bags.

    Since the '80s, more than 60 million butts have been cleaned up by the NGO, and the number currently in circulation in the ocean exceeds any other form of trash. It's a disastrous reality for the animals living in the seas. According to the Ocean Conservancy's report, ocean pollution does more than choke or entangle sea life:

    Scientists have found evidence that ocean plastic is linked with disease on coral reefs. Meanwhile, exposure to microplastics was shown to decrease the reproduction and population growth rate in zooplankton — animals that form the base of the ocean food chain.

    This said, many smokers are under the false assumption that a cigarette butt quickly degrades. However, the cellulose acetate — a form of plastic — it holds is not nearly as environmentally inconsequential as we thought. The process spirals downward from the moment you toss it on the ground. Indeed, a recent piece by Business Insider found that remnants of chucked cigarette butts are liable to turn up on our dinner tables.

    Until the filters begin decaying, they also release all the pollutants they absorb from the smoke, including substances such as nicotine, arsenic, and lead. These, as well as the decaying plastic, are then consumed by various sea creatures and, if that isn't awful enough, they finally end up in our own food again.

    Movements around the world have sprung up to combat our plastic problem, including the banning of plastic bags — California has experienced a 72 percent drop in litter — and concerted efforts to reduce our usage of plastic bottles. High taxation of cigarettes has a curbing effect, and more nations are requiring harsher warnings on packaging. Yet until fees for the improper disposal of cigarette butts are legislated, it will be difficult to achieve significant improvement from this problem.

    Getty Images

    However, given that many people equate "freedom" with personal proclivities that are the opposite of free — there is nothing liberating about chronic and deadly addictions — the public outcries that are sure to follow any meaningful legislation will likely drown out potential gains.

    As for now, those who volunteer for beach clean-ups, such as those the Conservancy coordinates, are — cigarette butt by cigarette butt — curbing ocean pollution and its effects on the environment. While laudable, eventually we'll realize their efforts are not enough. The only way this widespread problem can significantly reduced is through enforced regulations.

    --

    Stay in touch with Derek on Twitter and Facebook.

    Radical innovation: Unlocking the future of human invention

    Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

    Big Think LIVE

    Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

    Keep reading Show less

    Your body’s full of stuff you no longer need. Here's a list.

    Evolution doesn't clean up after itself very well.

    Image source: Ernst Haeckel
    Surprising Science
    • An evolutionary biologist got people swapping ideas about our lingering vestigia.
    • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
    • Here are the six traits that inaugurated the fun.
    Keep reading Show less

    Quantum particles timed as they tunnel through a solid

    A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

    Image source: carlos castilla/Shutterstock
    • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
    • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
    • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

    When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

    Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

    That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

    Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

    Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

    Frozen rubidium atoms

    Image source: Viktoriia Debopre/Shutterstock/Big Think

    One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

    Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

    To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

    Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

    With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

    Reactions to the study

    Scientists not involved in the research find its results compelling.

    "This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

    What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

    As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

    Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

    So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

    Illustration of cockpit of a self-driving car

    Indy Autonomous Challenge
    Technology & Innovation
    • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
    • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
    • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
    Keep reading Show less
    Mind & Brain

    The dangers of the chemical imbalance theory of depression

    A new Harvard study finds that the language you use affects patient outcome.

    Scroll down to load more…
    Quantcast