When The New Yorker Probes the "Decline Effect," An Opportunity Emerges to Rethink Science Education

At the New Yorker last week, science journalist Jonah Lehrer penned a conversation-starting feature on the so-called "decline effect," the tendency across scientific fields for a new and exciting finding to eventually lose its dramatic qualities and excitement.  Why? Because subsequent replications and studies poke holes in the certainty of the original observations and conclusions.


Lehrer's article is a notable piece of science journalism, in the tradition of explaining complex realities about the social nature of doing science and how scientific findings are communicated and perceived by the public.  Lehrer's focus and the reaction it has generated offers yet another useful example of the opportunity and need to embed media literacy curricula within science education at the highschool and college levels.  It's a topic I will be exploring over the next several months, and I am hoping to draw upon the expertise, insights, and suggestions of readers who leave their comments.

Since the article is behind a paywall, perhaps the best explainer of Lehrer's decline effect comes from Scientific American's John Horgan, author of The End of Science:

Lehrer reports on the "decline effect," the tendency of scientific claims to receive decreasing support over time. The term was coined by the parapsychologist J. B. Rhine in the 1930s to describe the apparent drop-off in extrasensory perception (ESP) of psychic subjects tested by Rhine for extended periods.

The likely explanation, of course, is that Rhine's subjects were never psychic; the initial finding of ESP was illusory, vanishing as Rhine's methods became more rigorous and his data more statistically significant. The decline effect is really a "decline of illusion," Lehrer explains, which "reminds us how difficult it is to prove anything." The decline effect has turned up in a host of fields, including not only squishy sciences like psychology, psychiatry, psychopharmacology and medical genetics, but even physics; measurements of the charge of electrons and a constant governing the decay of neutrons have exhibited the decline effect, according to Lehrer.

Lehrer attributes the effect to several common factors. First, a researcher stumbles on a dramatic correlation—say, between a new pharmaceutical and amelioration of schizophrenia—that actually stems not from causation but just from coincidence. The more dramatic the researcher's claim, the more likely he may be to get published and to obtain funding for more research. Other researchers jump on the bandwagon, doing follow-up studies that—because of the unconscious bias in favor of the initial claim—often corroborate it. Only gradually does counterevidence emerge, showing that the initial correlation stemmed not from causation but coincidence.

Consequently, science yields not truth but what comedy talk-show host Stephen Colbert calls "truthiness". None of this should surprise veteran science watchers—or anyone who's taken a course in the history or philosophy of science. I've whacked fields such as clinical psychology and behavioral genetics for churning out claims—A new and improved treatment for depression! A gene for liberalism!—that don't stand up to scrutiny. But Lehrer does a good job pulling together multiple strands into a unifying narrative of doubt. He cites the remarkable recent work of the epidemiologist John Ioaniddis, who has presented evidence that "most published research findings are false."

Lehrer also presents examples of the decline effect that were new to me. One is the link between physiological symmetry and sexual attraction in humans and other animals, which evolutionary psychologists have been touting for almost 20 years. Finally, the neo-Darwinian theory of human nature produced a not-completely obvious result! Except it didn't. A flurry of positive findings in the 1990s—Women have more orgasms when they couple with symmetrical guys!—gradually gave way to negative reports.

Anyone who works in the sciences or social sciences, analyzes quantitative data, tests and develops theories, puts them forward for peer-review, and tracks how conclusions and findings evolve in the literature, knows that there is a strong ring of truth to Lehrer's narrative of doubt.

Yet the reaction that the article has stirred in some cases does not match the nuance of Lehrer's arguments. The article has been unfairly critiqued by some for giving ammunition to those already committed to extreme doubt about subjects such as climate change or evolution.  As Lehrer notes at his blog, he's also been accused of being a post-modernist, arguing that there is no such thing as truth or reality.

On the first count that the article gives fodder to skeptics of science, I think this is another example of perceiving public opinion in terms of the extremes and to similarly evaluate the media as hostile, while overlooking the vast middle of public opinion and the favorable qualities of coverage. (This occurs commonly on heated issues such as climate change. See a column I did this year for Slate.)

Instead of fearing Lehrer's article and other science journalists who probe the social and uncertain world of science, as I explain below, scientists and educators should be embracing the article and asking for more. As for Lehrer being a "post-modernist," this is another example of some science advocates having a false, positivist outlook and using a catch-all term to describe an argument they don't like. (See the Science Wars.)

Journalism That Opens the Black Box of Science

If in the news media and in education we present science as a black box, only allowing the public or students to witness a staged presentation of overly-certain simplified claims about findings and benefits, then when true controversies or incidents of fraud occur, we only make the public vulnerable to dismissing the entire institution of peer-review and science.

Instead if we use examples such as Lehrer's article to engage in a conversation about the realities of science, students and the public will be much more likely to correctly attribute a controversy or incidence of fraud to individual failings and/or the type of more innocent social factors that Lehrer discusses in his article. Moreover, the public will be far less vulnerable to the cycles of hype that are now endemic to commercially-driven claims about science and technology. (See article last year at Nature Biotechnology and post yesterday.)

Consider the learning opportunity as describe by my fellow Big Think blogger David Berreby in a post titled "It's Not Anti-Science To Think In Terms of Evidence":

Lehrer's piece described an anxious sense, noticeable in many different branches of science, that today the evidence section of a lot of research papers isn't as reliable as assumed. The reasons could be psychological, mathematical (statistics packages are powerful and sophisticated, and the sheer amount of data now is huge), and cultural. The question is open. Gracefully, he avoids claiming to know more than he does.

None of this is a claim that about any theories, one way or the other. It's not about whether I'm right when I describe what I think you see in my telescope. It's about whether the telescope is working as well as it should.

So, here is what the piece is not: It's not a claim that there's no such thing as evidence. It's not a claim that we should all believe whatever the hell we want. It doesn't privilege ignorance over science. It does what we science journalists should be doing for our readers: Tell them how research is actually done, so that they can better judge for themselves what "science says." It is a lucid explanation of a real phenomenon, whose point, I think, is that scientists have taken notice because they want science to do better.

Embedding Media Literacy In Science Education

In reflecting on Lehrer's article, SciAm's John Horgan does note a flaw in his narrative of doubt, suggesting perhaps correctly that Lehrer's concluding framing of this complex side of science might lead readers to extreme attributions rather than informed skepticism. 

And here an added layer is offered relative to public education.  As journalist Lehrer probes the social side of science, Horgan in reaction links public attention back to the social side of journalism.  From Horgan's post:

My main complaint is that Lehrer makes science as a whole sound much "truthier" than it really is. His article was first pointed out to me by my friend Valerie, who believes in homeopathy and tarot cards. The article confirmed her suspicions that mainstream science and medicine may not be based on evidence any more solid than her supposedly (and IMHO, actually—sorry, Valerie) pseudoscientific beliefs. Lehrer's broad-brush critique will no doubt also cheer global-warming deniers, creationists, postmodernists and other pesky challengers of scientific orthodoxy.

Lehrer himself seems to have realized that he went too far. On his blog The Frontal Cortex, he dismisses the notion that "The Truth Wears Off" implicitly undermines the status of the theory of evolution by natural selection and global warming, which are "two of the most robust and widely tested theories of modern science." He also denies that he is "some sort of Derridean postmodernist, trying to turn publication bias into an excuse to not believe in anything."

But here is how Lehrer ends his article: "Just because an idea is true doesn't mean it can be proved. And just because an idea can be proved doesn't mean it's true. When the experiments are done, we still have to choose what to believe." This assertion is absurd. We may choose to believe in psychoanalysis rather than behaviorism, because both are equally flimsy. But the evidence is rock-solid for quantum mechanics, general relativity, the germ theory of infectious disease, the genetic code and many other building blocks of scientific knowledge, which have yielded applications that have transformed our world. There's nothing truthy about a hydrogen bomb.

If Lehrer didn't really mean that belief in a given scientific claim is always a matter of choice, why did he say it? He apparently decided, like many scientists, that truthiness would make a bigger splash than truth.

Are you starting to see where I am going? Lehrer's article and the exchanges it has catalyzed are wonderful teaching tools for science students.  No doubt, a few teachers and professors across the country have forwarded the articles and discussed them in class.

Yet these opportunities are too rich to only have a few classrooms engage with. Funding, formative research, development, evaluation, and resources are needed to widely diffuse a media literacy curriculum.

Science media literacy and other strategies for increasing civic science education are topics I will be focusing on over the next several months, as I prepare to give a lecture on the subject at a meeting in March convened by the American Association of Colleges and Universities on STEM education.

What do readers think, especially those who might be educators?  What are the opportunities for articles like Lehrer's, Horgan's reply, and other responses to be woven systematically into science coursework and courses across other disciplines?

See Also:

Investing in Civic Science Education about Climate Change: What Should Be the Goals?

Reconsidering Climate Change Literacy and Education

Nisbet, M.C. & Scheufele, D.A. (2009). What's Next for Science Communication? Promising Directions and Lingering Distractions. American Journal of Botany, 96 (10), 1767-1778. (PDF).

'Upstreamism': Your zip code affects your health as much as genetics

Upstreamism advocate Rishi Manchanda calls us to understand health not as a "personal responsibility" but a "common good."

Sponsored by Northwell Health
  • Upstreamism tasks health care professionals to combat unhealthy social and cultural influences that exist outside — or upstream — of medical facilities.
  • Patients from low-income neighborhoods are most at risk of negative health impacts.
  • Thankfully, health care professionals are not alone. Upstreamism is increasingly part of our cultural consciousness.
Keep reading Show less
Videos
  • Climate change is no longer a financial problem, just a political one.
  • Mitigating climate change by decarbonizing our economy would add trillions of dollars in new investments.
  • Public attitudes toward climate change have shifted steadily in favor of action. Now it's up to elected leaders.


Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

Elizabeth Warren's plan to forgive student loan debt could lead to an economic boom

A plan to forgive almost a trillion dollars in debt would solve the student loan debt crisis, but can it work?

Photo credit: Drew Angerer / Getty Images
Politics & Current Affairs
  • Sen. Elizabeth Warren has just proposed a bold education reform plan that would forgive billions in student debt.
  • The plan would forgive the debt held by more than 30 million Americans.
  • The debt forgiveness program is one part of a larger program to make higher education more accessible.
Keep reading Show less