3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.

Imagine that a health emergency strikes and you need an organ transplant – say, a heart. You get your name on a transplant list, but you find out there's a waiting period of six months. Tens of thousands of people find themselves in this dire situation every year. But 3D printing has the potential to change that forever.

The technology could usher in a future where transplantable organs can be printed not only cheaply, but also to the exact anatomical specifications of each individual patient.

What other innovations could 3D printing bring to medicine and health care? The sky is the limit, according to Dr. Todd Goldstein, a researcher with the corporate venturing arm of Northwell Health, New York State's largest health care provider and an industry leader in 3D-printing research and development.

"It comes down to what people can think up and dream up what they want to use 3D printing for," Goldstein says. "Ideally, you would hope that 50 years from now you'd have on-demand, 3D printing of organs."

While that's still on the horizon for researchers, 3D printing is already improving lives by revolutionizing medicine in three key areas.

​Printing realistic, customized organ models

3D printers can take images from MRI, PET, sonography or other technologies and convert them into life-size, three-dimensional models of patients' organs. These models serve as hands-on visualization tools that help surgeons plan the best approaches for complex procedures.

They also allow doctors to customize patient-specific models prior to surgery. For example, Northwell employs 3D printing in several clinical applications:

  • Tumor resection models clearly highlight the tumor and surrounding tissue
  • Orthopedic models are useful for pre-surgery measuring and medical device adjustments
  • Vascular models identify malformations in organs, tumors, sliced chambers, blood flow, valves, muscle tissue, and calcifications
  • Dentistry oral implants and appliances can be created in just one day, significantly reducing wait periods for Northwell dentists and their patients

Using realistic models not only delivers better health results but also shortens operating times. That gives patients less time under anesthesia, and hospitals potential savings of millions of dollars over just a few years.

Being able to visualize procedures before they occur also helps to comfort patients and their families. Take, for instance, the case of Barnaby Goberdhan, a man who discovered that his young son, Isaiah, had an aggressive tumor in his palate. Goberdhan met with Neha A. Patel, MD, a pediatric otolaryngologist at Cohen Children's Medical Center, a Northwell Health hospital, to discuss the procedure and learn about it with help from a 3D-printed model.

"Having a 3D printed depiction of my son was really helpful when talking with the doctor about his surgery," said Mr. Goberdhan. "The doctor was able to do more than talk me through what they were going to do – Dr. Patel showed me. There is almost nothing more frightening and stressful than having your child go through surgery. There were several options Dr. Patel walked us through for the best way to preserve Isaiah's teeth and prevent additional cuts within his mouth. I wanted all of my questions answered so I could be less fearful and more prepared to talk my son through what he was about to face. I wanted Isaiah to feel prepared. With the 3D model, we both felt more at ease."

For years, 3D printing surgical models was prohibitively expensive. Now, more affordable systems such as Formlabs' Form Cell give more hospitals across the country access to the technology in order to produce realistic, patient-specific models, usually within one day.

3D-printed prosthetics

Credit: Northwell Health

While 3D-printed organs are a long way in the future, today's technology is well suited for manufacturing prosthetics. 3D-printed prosthetics are often remarkably more affordable and personalized than their traditional counterparts. That's a big deal for many families, especially those with children who outgrow prosthetics and are forced to buy new ones.

One recent breakthrough in 3D-printed prosthetics came when Dan Lasko, a former Marine who lost the lower part of his left leg in Afghanistan, wanted the ability to swim with his prosthetic leg. Wearing prosthetics in water has been possible for years, but they typically slow swimmers down. No device had been able to go seamlessly from land to water or to help propel its wearer through the water.

To fix that, Northwell Health recently funded a project that developed The Fin – the world's first truly amphibious prosthetic. With The Fin, Lasko and his family can go straight into the pool from the locker room – or the diving board.

"I got back in the pool with my two young sons and for the first time was able to dive into the pool with them," Lasko said.

3D-printed prosthetics will help improve the daily lives of the nearly 2 million Americans who've lost a limb. That's promising because the increasing prevalence of Type 2 diabetes is expected to greatly increase the number of amputees in the U.S., according to a study published in the Archives of Physical Medicine and Rehabilitation.

​3D bioprinting

For years, 3D printers have manufactured various products: phone cases, toys, and even operational guns. To produce these objects, the machines heat a raw material, typically plastic, and build the object layer-by-layer according to a particular design.

3D bioprinting, a young field developed by researchers with Northwell Health, may someday perform the same process but instead with living cells in a raw material called bioink.

Daniel A. Grande, director at the Orthopedic Research Laboratory in the Feinstein Institute for Medical Research, an arm of Northwell Health, said he and his team first pursued 3D bioprinting by modifying 3D printers so they'd accept living cells.

"My initial concept of 3D printing was early studies that looked at modifying ink-jet printers, where we incorporate a bioink that includes cells within a delivery vehicle," Grande says. "That hydrogel can then be polymerized, or hardened, upon heat or UV-light stimulation, so that we can actually make a complex structure, three-dimensionally, that incorporates living cells. The hardened hydro-gel is then able to keep the cells alive and viable. It's also biocompatible, so it can be safely implanted in humans."

It's a promising enterprise, and it can radically change how we experience medical care.

"3D bioprinting's potential is almost limitless and has the potential to replace many different parts of the human body," says Michael Dowling, president and CEO at Northwell Health, and author of Health Care Reboot. "Researchers envision a future with 3D printers in every emergency room, where doctors are able to print emergency implants of organs and bones on demand and revolutionize the way medicine is practiced."

Dr. Todd Goldstein explains more about 3D bioprinting below:

More From Big Think
Related Articles

The surprise reason sleep-deprivation kills

New research establishes an unexpected gut connection.

Image source: Vaccaro et al, 2020/Harvard Medical School
Surprising Science
  • A study provides further confirmation that a prolonged lack of sleep can result in early mortality.
  • Surprisingly, the direct cause seems to be a buildup of Reactive Oxygen Species in the gut produced by sleeplessness.
  • When the buildup is neutralized, a normal lifespan is restored.

We don't have to tell you what it feels like when you don't get enough sleep. A night or two of that can be miserable; long-term sleeplessness is out-and-out debilitating. Though we know from personal experience that we need sleep — our cognitive, metabolic, cardiovascular, and immune functioning depend on it — a lack of it does more than just make you feel like you want to die. It can actually kill you, according to study of rats published in 1989. But why?

A new study answers that question, and in an unexpected way. It appears that the sleeplessness/death connection has nothing to do with the brain or nervous system as many have assumed — it happens in your gut. Equally amazing, the study's authors were able to reverse the ill effects with antioxidants.

The study, from researchers at Harvard Medical School (HMS), is published in the journal Cell.

An unexpected culprit

The new research examines the mechanisms at play in sleep-deprived fruit flies and in mice — long-term sleep-deprivation experiments with humans are considered ethically iffy.

What the scientists found is that death from sleep deprivation is always preceded by a buildup of Reactive Oxygen Species (ROS) in the gut. These are not, as their name implies, living organisms. ROS are reactive molecules that are part of the immune system's response to invading microbes, and recent research suggests they're paradoxically key players in normal cell signal transduction and cell cycling as well. However, having an excess of ROS leads to oxidative stress, which is linked to "macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging." To prevent this, cellular defenses typically maintain a balance between ROS production and removal.

"We took an unbiased approach and searched throughout the body for indicators of damage from sleep deprivation," says senior study author Dragana Rogulja, admitting, "We were surprised to find it was the gut that plays a key role in causing death." The accumulation occurred in both sleep-deprived fruit flies and mice.

"Even more surprising," Rogulja recalls, "we found that premature death could be prevented. Each morning, we would all gather around to look at the flies, with disbelief to be honest. What we saw is that every time we could neutralize ROS in the gut, we could rescue the flies." Fruit flies given any of 11 antioxidant compounds — including melatonin, lipoic acid and NAD — that neutralize ROS buildups remained active and lived a normal length of time in spite of sleep deprivation. (The researchers note that these antioxidants did not extend the lifespans of non-sleep deprived control subjects.)

Image source: Tomasz Klejdysz/Shutterstock/Big Think

The experiments

The study's tests were managed by co-first authors Alexandra Vaccaro and Yosef Kaplan Dor, both research fellows at HMS.

You may wonder how you compel a fruit fly to sleep, or for that matter, how you keep one awake. The researchers ascertained that fruit flies doze off in response to being shaken, and thus were the control subjects induced to snooze in their individual, warmed tubes. Each subject occupied its own 29 °C tube.

For their sleepless cohort, fruit flies were genetically manipulated to express a heat-sensitive protein in specific neurons. These neurons are known to suppress sleep, and did so — the fruit flies' activity levels, or lack thereof, were tracked using infrared beams.

Starting at Day 10 of sleep deprivation, fruit flies began dying, with all of them dead by Day 20. Control flies lived up to 40 days.

The scientists sought out markers that would indicate cell damage in their sleepless subjects. They saw no difference in brain tissue and elsewhere between the well-rested and sleep-deprived fruit flies, with the exception of one fruit fly.

However, in the guts of sleep-deprived fruit flies was a massive accumulation of ROS, which peaked around Day 10. Says Vaccaro, "We found that sleep-deprived flies were dying at the same pace, every time, and when we looked at markers of cell damage and death, the one tissue that really stood out was the gut." She adds, "I remember when we did the first experiment, you could immediately tell under the microscope that there was a striking difference. That almost never happens in lab research."

The experiments were repeated with mice who were gently kept awake for five days. Again, ROS built up over time in their small and large intestines but nowhere else.

As noted above, the administering of antioxidants alleviated the effect of the ROS buildup. In addition, flies that were modified to overproduce gut antioxidant enzymes were found to be immune to the damaging effects of sleep deprivation.

Zzzzz....

The research leaves some important questions unanswered. Says Kaplan Dor, "We still don't know why sleep loss causes ROS accumulation in the gut, and why this is lethal." He hypothesizes, "Sleep deprivation could directly affect the gut, but the trigger may also originate in the brain. Similarly, death could be due to damage in the gut or because high levels of ROS have systemic effects, or some combination of these."

The HMS researchers are now investigating the chemical pathways by which sleep-deprivation triggers the ROS buildup, and the means by which the ROS wreak cell havoc.

"We need to understand the biology of how sleep deprivation damages the body so that we can find ways to prevent this harm," says Rogulja.

Referring to the value of this study to humans, she notes,"So many of us are chronically sleep deprived. Even if we know staying up late every night is bad, we still do it. We believe we've identified a central issue that, when eliminated, allows for survival without sleep, at least in fruit flies."

Withdrawal symptoms from antidepressants can last over a year, new study finds

We must rethink the "chemical imbalance" theory of mental health.

Photo Illustration by Joe Raedle/Getty Images
Surprising Science
  • A new review found that withdrawal symptoms from antidepressants and antipsychotics can last for over a year.
  • Side effects from SSRIs, SNRIs, and antipsychotics last longer than benzodiazepines like Valium or Prozac.
  • The global antidepressant market is expected to reach $28.6 billion this year.
Keep reading Show less

Skills that will be necessary to find a job post-COVID-19

Data from LinkedIn suggests soft skills will be the most in-demand as the economy begins to rebuild and 2020 grads look for work.

Coronavirus
  • Today's graduates are entering the worst job market since the Great Depression.
  • LinkedIn's annual "Grad's Guide to Getting Hired" report states that soft skills like leadership and communication will be the most in-demand.
  • Even before the coronavirus economy, experts extolled soft skills as critical for tomorrow's work force.
  • Keep reading Show less