The joy of finding out

The process of digging into hard questions makes the moment of discovery all the more satisfying.

The joy of finding out

What's the hardest thing about being a scientist? Is it the years and years of training with no certainty that it will ever lead to a steady job? Is it the endless hours of writing grant proposals, most of which will never be funded?

While those are certainly difficulties, I believe that the hardest thing about being a scientist is not be able to tell other people the immense and profound joy that comes through finding something out.

One of the weirdest things about research is the month-long rabbit holes you can find yourself scurrying down in search some elusive, arcane, but oh-so-important fact. When, after all those weeks in the darkness, you finally find your answer, it's nothing less than soul-satisfying. The pleasure that comes in these moments is deep and rich—and really, really hard to explain to your loved ones, who are apt to look at you sideways when you try.

Let me give you an example.

For the last month I've been on the hunt for the answer to a simple question about asteroids—which is not a subject I've spent any time researching before. Asteroids are basically chunks of rock and metal orbiting the sun—basically “construction debris" left over from the era of planet building when our solar system was very young (about 4 billion years ago). Since then, asteroids have been moved around via gravitational nudges from the planets—including the many in the Asteroid Belt between Mars and Jupiter.

Occasionally, asteroids slam into each other, creating smaller bodies—which is why there is a wide range of asteroid sizes, running from a few hundred meters all the way up dwarf planets with diameters of 1000 km like Ceres (shown at the top of this page). Smaller bits of rock—meteoroids—are as small as sand grains floating in space, and the line between them and an asteroid is a matter of definition.

So why was I thinking about asteroids and what was my question?

Don't laugh, but I wanted to know which asteroids would make good space stations. Seriously, the idea of hollowing out asteroids and using their interiors for human habitation has gotten a lot of ink over the last decade. I first read about it in science fiction books, and then it popped up in a few scientific studies.

My question was simple: How many asteroids could serve as space habitats?

Running into rubble

I soon learned from Alice Quillen, my fellow prof at the University of Rochester, that most asteroids are not made of solid rock but of rubble piles. A rubble pile is basically a bunch of debris held loosely together by its own collective, weak gravity. They're not solid, and wouldn't offer any structural stability, so you wouldn't want to use them as the basis for space-station construction.


But digging deeper, I learned that only smaller asteroids are expected to be rubble piles. The larger ones are believed to be solid rock. So now I needed to know how many “large" asteroids are in the solar system—that is, once I understood what “large" meant, in terms of diameter. Given that asteroids are a pretty well-studied subject—via years of telescope and space probes—it was a question that had to have an answer.

The rabbit hole was now open.

I needed to know the cut-off (in size) between “small" (rubble-pile asteroids) and “large" (solid ones). Once I knew that answer, I could feed it into mathematical models and projections to learn the total number of large, solid asteroids out there.

Simple, right?

Nope. I could lay out the exact path I took through the scientific literature on my way to the answer, but I'll tell you this much—it wasn't a straight line. There were lots of problems. Different scientists had different opinions about where the rubble pile limit was in terms of asteroid diameter. Then came finding the right mathematical form, which was already spelled out in lots of papers. The only problem was getting the “constants," the numbers that don't change, in the equation. That took some hunting too.

The thrill of the hunt

But here is the thing: All that hunting, all those hours reading papers, review articles, and websites—it was all soooo much fun. I was always learning even when I was going down a dead end. And when I found some number or mathematical expression that got me a little closer to where I needed to be, it felt like finding a nugget of buried treasure.

And then, finally, I stumbled on a NASA JPL website that gave me everything I needed. (If I'd been an expert in the field, I would have known it existed from the get-go. Sigh).

So, I'd found it. I found my answer.

If we say the cutoff diameter between rubble pile and solid asteroids is 50 kilometers (31 miles), then there are about 800 asteroids out there waiting to for us to build cozy habitats. Now, the big asteroids might be problematic for setting up shop for their own reasons.

But the point here is not the number, but the exquisite joy I experienced for just a few moments when I found the number. It was truly a beautiful thing that has to be experienced to be appreciated. I felt like I'd learned something valuable, like I had gained some key insight into the nature of the world even though I knew 99 percent of the world likely didn't care.

So, it's that feeling, that sense of joy that you can't explain to anyone but another scientist. That is hardest thing about the job.

I hope you can find your own form of this feeling in your own life, because there are many versions that come from making art or music or cooking or gardening, or whatever is your thing.

The process of learning—particularly that eureka the moment of discovery—is about the best thing imaginable.

The post The Joy of Finding Out appeared first on ORBITER.

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source:

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source:

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source:

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

Surprising Science

Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.

Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less