What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close
With rendition switcher

Transcript

Question: How does sound travel from the ear to the brain?

Tony Zador: So actually we know a lot about the early stages of auditory processing.  We know that there are sound waves.  They are propagated down into a structure in your ear called the cochlea.  Within that structure there are neurons that are exquisitely sensitive to minute changes in pressure.  They are sensitive to those changes at different frequencies, so actually what your cochlea does is it acts as what is called a spectral analyzer, so there are some neurons that are sensitive to low frequency sounds and other neurons that are sensitive to middle frequency and other neurons that are sensitive to high frequency and each one of those is coded separately along a set of nerve fibers, then they’re passed through a bunch of stages in your auditory system before they get to your cortex, so the last stage...  So I’ll say that what is interesting is that the stages of processing a sound are incredibly different as you might imagine from the stages of processing a visual scene, so those stages that I just told you are designed for processing physical vibrations between the ranges in a human of 20 hertz to 20 kilohertz.  We have eyes that aren’t responsible for transducing sound vibrations, but rather, light. And you know the structure of the retina is also well understood.  There are photoreceptors that pick up photons and transmit those signals, but what is interesting is that once those signals get processed or, if you like, preprocessed they end up in structures that now look remarkably similar.  A structure called the thalamus and there is a part of the thalamus that receives input from the auditory system, another part of the thalamus that receives input from the visual system, from the retina, and then after it gets to the thalamus it goes to the cortex and within the cortex the signals now look very similar.

And so what seems to be the case is that there is this preprocessor in the... on the auditory side, on the visual side and actually all your sensory modalities that’s highly specialized for the kind of sensory input we have, but then it converts it into sort of a standard form that gets passed up to the cortex, so what we actually believe is that if that the mechanisms of auditory attention are actually not probably fundamentally different from the mechanisms of any other kind of attention, including visual attention. 

Recorded August 20, 2010
Interviewed by Max Miller

 

How Do We Perceive Sound?

Newsletter: Share: