What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos


Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers


Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge


Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
With rendition switcher


Question: What are the similarities between ballet and mathematics? 

Catherine Asaro: There are a lot of similarities or things that fit together between, especially ballet and mathematics. Ballet for one thing, it's all about spatial perception. To give you an example, I had a student when I was teaching physics at Kenyon College who was also a ballet dancer. And she was talking to me one time because she really liked physics and I knew her from both ballet and physics because I taught her as a physics professor and we both took the ballet classes at the college. 

And she said to me, "Well, I'd really like to do physics but I know girls don't have as good spatial perception." And this was for a while a misconception; I'm not sure where it got started but the idea that girls somehow couldn't do this. I think it's pretty much fallen by the wayside now, but at the time she believed it. And I said, "Okay, I want you to answer a question for me." She said, "Okay." I said, "You're taking that ballet class for credit." She says, "Oh yeah, I'm taking quite a few dance classes for credit." I said, "So you have to do an exam or a final project." And she said, "Well yeah, of course." 

I said, "What's your final project?" And she said, "Oh I choreographed a dance." And I said, "For how many people?" And she said, "Eight." And I said, "Okay, how did you choreograph this dance for eight people?" And she said, "Well I put on the music and I imagine in my head what they would do and then I went and told them what to do." I said, "So you envisioned for a three to four minute piece of music the steps of eight people moving in space and you figured out and played with that and came up with a plan?" She said, "Well yeah, of course." And I said, "I wish my physics majors had that good of spatial perception."

And I think it was one of those eye-opening moments. I know for me the realization that being able to make the connection between different areas of what we do in our life. If you can think in terms of imagining dancers or sports, and what they're doing on the playing field you have very good spatial perception. And that translates very easily into physics. Imagine the theoretical physics and how wave functions, and wave forms move, and that sort of thing. 

The other part that's very connected is ballet is very much about algorithms and patterns, and numerics. Everything we do in an exercise, for example, at the bar is an algorithm. And you learn them, they become incorporated in our body. You think, "Okay two here, one here, one back, reverse it," and you have to be able to reverse things very quickly, learn them very quickly. You have to become so used to the patterns that especially if you become professional, you can just go like that when someone tells you to do such and such. That's means you're incorporating not only the spatial perception aspects, but the ability to quickly see and make patterns or algorithms in your mind.

And then of course there's also the classical music connection. We've known for a long time that many mathematically oriented people are also very musical. And even Bach, there have been whole analysis of the mathematics of his music; you get that in dance, too. So when you put all those things together, it's no surprise to me at all that I found a connection between ballet and math. And I'm finding it in my students, too. Now that you see more girls going into mathematics, you tend to see more girls in ballet too, so the connection is becoming more obvious. A lot of my best students who are female were also dancers or something similar, something connected to that. 

Question: When you are writing a novel, solving a math problem, or dancing, what keeps you focused? 

Catherine Asaro: If I were to try and find a unifying emotion that kept me calm and focused while I was dancing or writing, or solving a math problem, I think the one unifying thing about all those that keeps my interest is creativity. It's what I like best about doing any of them. It's the creativity and also having the technical ability to use your creative impulses. To solve math problems, you need to know the basic mathematics before you can start applying it. So you have to get technical expertise in how to solve the problems. 

To do ballet, I love doing it, but you need the technical ability to do the steps. I can imagine my leg up here but if I'm out of shape the leg won't go up even if I want it to. And it's the same for science and for writing. To write you have to be able to know how to put words together. So part of the joy of it for me is the mastery of the techniques. Watching yourself improve, seeing the improvement, seeing the leg go from here to here, to here, knowing you're getting better at it. The satisfaction of going, "Oh I can do that today and I couldn't yesterday." 

But really that, in one sense, is the end to the means. And the means is that now I can apply my creative ideas and I have the tools to do it. I can tell that story that's been evolving in my mind. I have the tools now to put it down on paper and make it on paper the way I see it in my head. So I would say the creative part is the most satisfying for me. 

Recorded on June 7, 2010

More from the Big Idea for Thursday, September 13 2012

Today's Big Idea: Number Theory

Math is all around us, and our ability to access and understand numbers is more important than ever before. And yet, the world of high-level mathematics is almost completely inaccessible to the av... Read More…


How Ballet Is Like Math

Newsletter: Share: